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Abstract

In spatial reasoning, relationships between spatial entities play a major role. In image interpretation, computer vision and structural

recognition, the management of imperfect information and of imprecision constitutes a key point. This calls for the framework of fuzzy sets,

which exhibits nice features to represent spatial imprecision at different levels, imprecision in knowledge and knowledge representation,

and which provides powerful tools for fusion, decision-making and reasoning. In this paper, we review the main fuzzy approaches for

defining spatial relationships including topological (set relationships, adjacency) and metrical relations (distances, directional relative

position).
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1. Introduction

Spatial reasoning can be defined as the domain of spatial

knowledge representation, in particular spatial relations

between spatial entities, and of reasoning on these entities

and relations. This field has been largely developed in

artificial intelligence, in particular using qualitative rep-

resentations based on logical formalisms. In image

interpretation and computer vision, it is much less

developed and is mainly based on quantitative represen-

tations. A typical example in this domain concerns model-

based structure recognition in images. The model constitutes

a description of the scene where objects have to be

recognized. This description can be of iconic type, as for

instance a digital map or a digital anatomical atlas, or of

symbolic type, as linguistic descriptions of the main

structures. The model can be attached to a specific scene,

the typical example being a digital map used for

recognizing structures in an aerial or satellite image of a

specific region. It can also be more generic, as an
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anatomical atlas, which is a schematic representation that

can be used for recognizing structures in a medical image

of any person. In both types of descriptions (iconic and

symbolic), objects are usually described through some

characteristics like shape, size, appearance in the images,

etc. But this is generally not enough to discriminate all

objects in the scene, in particular if they are embedded in a

complex environment. For instance in a magnetic reson-

ance image of the brain, several internal structures appear

as smooth shapes with similar grey levels, making their

individual recognition difficult. Similar examples can be

found in other application domains. In such cases, spatial

relationships play a crucial role, and it is important to

include them in the model in order to guide the recognition

[1]. The importance of spatial relationships has been

similarly recognized in many different works. Many

authors have stressed the importance of topological

relationships, but distances and directional relative position

are also important. Freeman [2] distinguishes the following

primitive relationships: left of, right of, above, below,

behind, in front of, near, far, inside, outside, surround.

Kuipers [3,4] considers topological relations (set relations,

but also adjacency which was not considered by Freeman)
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and metrical relations (distances and directional relative

position). In this paper, we will consider all these relations.

Moreover, imprecision has to be taken into account in such

problems. Imprecision is often inherent to images, and its

causes can be found at several levels: observed phenomenon

(imprecise limits between structures or objects), acquisition

process (limited resolution, numerical reconstruction

methods), image processing steps (imprecision induced by

a filtering procedure for instance). This may induce impreci-

sion on the objects to be recognized (due to the absence of

strong contours or to a rough segmentation). But imprecision

can be found also in semantics of some relationships (such as

‘left of’, ‘quite far’, etc.), or in the type of knowledge

available about the structures (for instance anatomical

textbooks describe the caudate nucleus as ‘an internal brain

structure which is very close to the lateral ventricles’) or even

in the type of question we would like to answer (in mobile

robotics for instance, we may want a robot ‘go towards an

object while remaining at some security distance of it’).

In summary, the main ingredients in problems related to

spatial reasoning include knowledge representation (includ-

ing spatial relationships), imprecision representation and

management, fusion of heterogeneous information and

decision-making. Fuzzy set theory is of great interest to

provide a consistent mathematical framework for all these

aspects. It allows to represent imprecision of objects,

relationships, knowledge and aims, it provides a flexible

framework for information fusion as well as powerful tools

for reasoning and decision-making.

The aim of this paper is to review the main approaches

for modeling spatial relationships under imprecision in the

fuzzy set framework. We distinguish between relationships

that are mathematically well defined and relationships that

are intrinsically vague. Topological relationships (such as

set relationships and adjacency) and distances belong to

the first class. If the objects are precisely defined, their

relationships can be defined and computed in a numerical

(purely quantitative) setting. But if the objects are

imprecise, as is often the case if they are extracted from

images, then the semi-quantitative framework of fuzzy sets

proved to be useful for their representation, as spatial

fuzzy sets. Definitions of relationships have then to be

extended to be applicable on fuzzy objects. Results can

also be semi-quantitative, and provided in the form of

intervals or fuzzy numbers. Some metric relationships, like

relative directional position, belong to the second class.

Even for crisp objects, fuzzy definitions are then

appropriate.

Section 2 contains some preliminaries about spatial fuzzy

sets, some basic definitions, and general principles to extend

a crisp relation to a fuzzy one. Set theoretical relationships

(intersection and inclusion) are described in Section 3.

Then, other topological relations (local such as neighbor-

hood or more global such as adjacency) are addressed in

Section 4. Distances are reviewed in Section 5 and finally

directional relative position in Section 6.
2. Preliminaries

2.1. Spatial fuzzy sets

Let S be the image space, typically Z
2 or Z

3 for digital

2D or 3D images, or, in the continuous case, R
2 or R

3:

A spatial fuzzy set (or fuzzy image object) is a fuzzy set

defined on S. Its membership function m represents the

imprecision in the spatial extent of the object. For any point

x of S (pixel or voxel), m(x) is the degree to which x belongs

to the fuzzy object. As usual in the fuzzy set community,

and for the sake of simplicity, m will denote both the fuzzy

set and its membership function. Using fuzzy sets may

represent different types of imprecision, either on the

boundary of the objects (due for instance to some partial

volume effect or to the spatial resolution), or on their

individual variability, etc. In the sequel, F denotes the set of

all fuzzy sets defined on S.

2.2. Notations and basic definitions

We recall here a few basic definitions for the sake of

completeness and introduce some notations. A complete

description of fuzzy set theory can be found in Ref. [5].

From m2F; some particular crisp (binary) sets can be

derived, such as its core: CoreðmÞZ fx2S;mðxÞZ1g; its

support: SuppðmÞZ fx2S;mðxÞO0g; its a-cuts (for

a2]0,1]): maðxÞZ fx2S;mðxÞRag:

A fuzzy number is a convex upper semi-continuous (and

unimodal) fuzzy set on R
C having a bounded support.

A few basic operators on membership values will be used

in the following, such as t-norrns, t-conorms and comple-

mentation [5]. A t-norm is an operator t from [0,1]![0,1]

into [0,1] which is commutative, associative, increasing in

both variables and that admits 1 as unit element. It

represents a conjunction and generalizes intersection and

logical ‘and’. Typical examples are min(a, b), ab, max(aC
bK1, 0), the last one being known as the Lukasiewicz

t-norm. A t-conorm is an operator T from [0,1]![0,1] into

[0,1] which is commutative, associative, increasing in both

variables and that admits 0 as unit element. It represents a

disjunction and generalizes union and logical ‘or’. Typical

examples are max(a, b), aCbKab, min(aCb, 1), the last

one being the Lukasiewicz t-conorm. A complementation is

an operator c from [0,1] into [0,1] which is strictly

decreasing, involutive, and such that c(0)Z1, c(1)Z0.

The most used complementation is defined as ca2[0,1],

c(a)Z1Ka. From a t-norm t and a complementation c a

dual t-conorm T can be derived as c(a,b)2[0,1]![0,1],

T(a, b)Zc(t(c(a), c(b))). A strictly monotonous Archime-

dian t-norm is a t-norm t such that ca2[0,1], t(a,a)!a and

c(a,b,b 0)2[0,1]3, b!b 00t(a,b)!t(a,b 0). Archimedian

t-conorms are defined by duality. A typical example of

Archimedian t-norm is the product.

We will denote by RB a relation between two binary

(crisp) subsets of S: This relation can provide a binary
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result: for X 4S; Y 4S; RB(X,Y)2{0,1} (for instance if RB

is an adjacency relation), or a numerical result: RBðX;YÞ2
R; RBðX; YÞ2R

C (for instance if RB is a distance), or

RB(X, Y)2[0,1]. The aim of this paper is to extend spatial

relationships to the fuzzy case, i.e. to relationships between

two fuzzy sets. We will denote by R the extension of RB to

fuzzy sets.

Several definitions in this paper are based on mathemat-

ical morphology [6] and its extension to fuzzy sets, and

more precisely on dilation and erosion. In the crisp case, the

dilation DB(X) of a set X by a structuring element B (a subset

of S) is defined as

DBðXÞ Z fx2S;XhBx s;g; (1)

where Bx denotes the translation of B at x. The erosion EB(X)

of a set X by a structuring element B is defined as:

EBðXÞ Z fx2S;Bx 4Xg: (2)

Dilation and erosion are dual operators: EB(X)ZDB(XC)C

where XC denotes the complement of X in S: Applying

successively dilation (respectively erosion) by the same

structuring element n times will be denoted by Dn
BðXÞ

(respectively En
BðXÞ). If B is a ball of radius n of the

Euclidean distance in S (or of a digital distance), then the

dilation and the erosion by B are simply denoted by Dn(X)

and En(X).

Several definitions of fuzzy mathematical morphology

have been proposed in the literature during the last decade.

Here, we just give an example, chosen for its nice properties

with respect to classical morphology, where dilation and

erosion of a fuzzy set m by a structuring element n are,

respectively, defined, for all x2S; by [7]

DnðmÞðxÞ Z supft½nðy KxÞ;mðyÞ�; y2Sg; (3)

EnðmÞðxÞ Z inffT½cðnðy KxÞÞ;mðyÞ�; y2Sg; (4)

where t is a t-norm and T the associated t-conorm with

respect to the complementation c. Applying successively

dilation (respectively erosion) n times by the same

structuring element n will be denoted by Dn
nðmÞ (respectively

Ev
nðmÞ).
2.3. Constructing fuzzy relations from crisp relations

Common and generic methods that can be used for

defining a fuzzy relationship from its equivalent binary

(crisp) one can be categorized into three main classes. The

first type relies on the ‘extension principle’, as introduced

by Zadeh [8]. The second class relies on computation on

a-cuts. These two classes of definitions explicitly involve the

relations on crisp sets. The third class of methods consists in

providing directly fuzzy definitions of the relationships, by

substituting all crisp expressions by their fuzzy equivalents.

Originally, the first generic method for extending crisp

operators to fuzzy operators is due to Zadeh [8] and known
as the extension principle. Let us first consider a function f

from U to V: Let m be a fuzzy set defined on U: The

extension of f to a fuzzy set is a fuzzy set m 0 defined on V: It

is constructed as follows:

cy2V; m0ðyÞZ
0 if f K1ðyÞZ;;

supx2UjyZf ðxÞmðxÞ otherwise:

(
(5)

This extends to the more general case where f is defined on a

product space.

A typical example of application of the extension

principle is the compatibility between two fuzzy sets, as

defined by Zadeh [9]. Let us consider a fuzzy set m on some

space U: The value m(x) may be interpreted as a degree of

compatibility of x with the fuzzy set m [5] (m being for

instance a fuzzy number). The compatibility of a fuzzy set

m 0 of U with m can be evaluated using the extension

principle as a fuzzy set mcomp on [0,1]:

ct2½0;1�; mcompðtÞZ
0 if mK1ðtÞZ;;

supx2UjtZmðxÞm
0ðxÞ otherwise:

8<
:

(6)

This notion of compatibility has been used in Ref. [10] to

define directional spatial relations (see Section 6.3).

One way to define crisp sets from a fuzzy set consists in

taking the a-cuts of this set. Conversely, a fuzzy set can be

reconstructed from its a-cuts. Therefore, a class of methods

for defining fuzzy operations from crisp ones relies on the

application of the crisp operation on each a-cut and then

combining the results to reconstruct a fuzzy operation by

stacking up the a-cuts. Let us denote by m and n the

membership functions of two fuzzy sets defined on the

space S: Let us now consider a relation RB between crisp

sets. The fuzzy equivalent R of RB, applied to m and n, is

defined as

Rðm; nÞ Z

ð1

0
RBðma; naÞda; (7)

or by a double integration as:

Rðm; nÞ Z

ð1

0

ð1

0
RBðma; nbÞda db: (8)

Other fuzzification equations are possible, like [7,11]

Rðm; nÞ Z sup
a2�0;1�

minða;RBðma; naÞÞ; (9)

if the relation RB takes values in [0,1], or:

Rðm; nÞ Z sup
a2�0;1�

ðaRBðma; naÞÞ: (10)

Another method for combining the results on a-cuts is

similar to the extension principle [8]. In general it leads to

a fuzzy set on V: For instance if VZR; the crisp relation

provides real values. While the corresponding fuzzy

relation using previous equations also provides numbers,
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the following one provides fuzzy numbers

cn2V; Rðm; nÞðnÞ Z sup
RBðma;naÞZn

a; (11)

and represents the degree to which the relation between m

and n is equal to n. If the relationship to be extended only

takes binary values (0/1, or true/false), then this equation

reduces to:

Rðm; nÞ Z sup
RBðma;naÞZ1

a: (12)

A last class of methods consists in translating binary

equations into their fuzzy equivalent. This approach

completely differs from the two previous ones in the

sense that it does not use explicitly the crisp relation or

operation. Indeed, in the extension principle as well as in

approaches based on a-cuts, the definition of a fuzzy

operation is a function of the corresponding crisp

operation. Here, a fuzzy operation is given directly by an

equation involving fuzzy terms, that just mimics the crisp

equation. This translation is generally done term-by-term.

For instance, intersection is replaced by a t-norm, sets by

fuzzy set membership functions, etc. This translation is

particularly straightforward if the binary relationship can

be expressed in set theoretical and logical terms. Table 1

summarizes the main crisp concepts involved in set

equations, and their fuzzy equivalent. The many possibi-

lities to translate for instance set union using a t-conorm

induce that many definitions are issued from this method,

depending on the choice of the fuzzy operators used for

translating the crisp corresponding ones.

Links between extension principle and combination of

a-cuts using Eq. (9) have been established in Ref. [11].

Other links exist between some definitions. For instance, if

RB is a crisp relationship taking values in {0,1}, its

extension using Eq. (12) is a value in [0,1] and is equivalent

to the two fuzzification procedures given by Eqs. (9) and

(10). The question of which extension should be used does

not have a definite answer until now. However, it can be

noted that the extension principle is well adapted for

translating analytical expressions, while the formal trans-

lation method is well-adapted if the operators to be

extended can be expressed using set theoretical and logical

terms. The properties of the obtained extended operators

have to play an important role in the choice of a method,

since they may vary depending on it.
Table 1

Translation of crisp concepts in their fuzzy equivalents

Crisp concept Equivalent fuzzy concept

Set (X) Fuzzy set/membership function m

Complement of a set Fuzzy complementation c

Intersection (h) t-norm t

Union (g) t-conorm T

Existence (d) Supremum

Universal symbol (c) Infimum
3. Set theoretical operations

Let us start our review of fuzzy relationships by set

operations. We do not consider here the point of view of

constructing a fuzzy set which is the result of the combination

of two fuzzy sets by a set operation, but we take another point

of view, which addresses the question: are two fuzzy sets

satisfying some set relationships? For instance: is m included

in n? In the crisp case, such questions receive binary answers.

When the objects are fuzzy, imprecisely defined, the answer

to such questions becomes a matter of degree, and amounts to

define a degree to which the relation is satisfied. We consider

here degrees of intersection or non-intersection (correspond-

ing to the ‘outside’ relation of Freeman) and degree of

inclusion (‘inside’ relation of Freeman). They belong to the

class of topological relations according to Kuipers.

3.1. Degree of intersection

Saying that two sets intersect translates in the fuzzy case

as a degree mint(m, n) to which two fuzzy sets m and n

intersect. In the crisp case, the set equation expressing that

two crisp subsets X and Y of S intersect is:

XhY s; or equivalently dx2S; x2XhY : (13)

On the other hand, the fact that X and Y do not intersect is

expressed by the non-satisfaction of this equation. These

two possible states in the crisp case correspond to a binary

‘degree’ of intersection, which is equal to 1 if the equation is

satisfied, and to 0 if it is not.

3.1.1. Direct extension

In the fuzzy domain, this binary degree becomes a degree

in [0,1], which expresses the degree of satisfaction of

this equation. It can be defined for instance using the

formal translation method. The simplest fuzzy translation

(see Table 1) provides

mintðm; nÞ Z sup
x2S

t½mðxÞ; nðxÞ�; (14)

where t is any t-norm. This expression may vary from 0,

which corresponds to no intersection at all (typically if m

and n have disjoint supports) to 1 if at least one point x

belongs completely to both m and n. Note that in this case,

the other fuzzification methods (combination of a-cuts,

extension principle) provide the same result, or a particular

case where tZmin. This form has been used for instance to

define fuzzy morphological dilations (see Ref. [7] for more

developments on this). Indeed, Eq. (3) corresponds to the

degree of intersection of m and the translation of n at x.

From the degree of intersection, a degree of empty

intersection (or of disjunctness) is then derived as

mlintðm; nÞ Z c½mintðm; nÞ�; (15)

where c is a fuzzy complementation (for instance defined as

ca2[0,1], c(a)Z1Ka). This form has already been widely
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used in the fuzzy set literature. In particular, it is often

interpreted as a degree of conflict between two fuzzy sets or

two possibility distributions [12].
3.1.2. Introducing the volume of the overlapping domain

However, this form is not always adequate for image

processing or vision purpose since it does not include any

spatial information. This may even lead to counter-intuitive

results: the expression supx2St½mðxÞ; nðxÞ� only represents the

maximum height of the intersection. Although it is generally

low for fuzzy sets that have almost disjoint supports, its value

does not account for different overlapping situations. This

will be illustrated in Sections 3.3 and 4.3. The degree of

intersection and of non-intersection can therefore be

reformulated in order to better represent the notion of spatial

overlapping by considering the fuzzy hypervolume Vn (in a

space of dimension n) of the intersection. This also

corresponds to a translation process, in the sense that

disjunctness can be expressed in the crisp case as: XhY Z
;5VnðXhYÞZ0: For defining the hypervolume of a fuzzy

set, we simply use the classical fuzzy cardinality. This

provides for a fuzzy set m (having a bounded support) in the

discrete case VnðmÞZ
P

x2S mðxÞ; and in the continuous case

VnðmÞZ
Ð

x2S mðxÞ:

From the hypervolume of t(m, n), we can derive a degree of

intersection in [0,1]. It should be equal to 0 if m and n have

completely disjoint supports, be high if one set is included in

the other, and increasing with respect to the hypervolume of

the intersection. The following definition satisfies these

requirements1:

mintðm; nÞ Z
Vn½tðm; nÞ�

min½VnðmÞ;VnðnÞ�
: (16)

Again a degree of non-intersection can be derived from this

expression using Eq. (15).
3.1.3. Properties

An important property of these various definitions is that

the intersection degrees defined by Eqs. (14) and (16) are

both consistent with the binary definition. Moreover, they

satisfy the following properties:
†

1

symmetry: cðm; nÞ2F2; mint(m,n)Zmint(n,m);
†
 reflexivity (Eq. (14)) if the fuzzy sets are normalized:

dx2S; m(x)Z10mint(m,m)Z1; for Eq. (16), reflexivity

holds if tZmin;
†
 if one of the sets is empty ðcx2S; nðxÞZ0Þ; then the

degree of intersection is always 0;
†
 if one of the sets is equal to Sðcx2S; nðxÞZ1Þ; the

degree of intersection is always equal to 1 using Eq. (16),

and to 1 for normalized fuzzy sets using Eq. (14);
†
 invariance with respect to geometrical transformations

(translation, rotation).
Other definitions leading to similar properties are possible.
3.2. Degree of inclusion

We consider here the inclusion relation. It should be

noted that a degree of equality can be derived from a

degree of inclusion, by combining in a conjunctive way

(using a t-norm) the degree of inclusion of one set in the

other, and the degree of inclusion of the second set in

the first one. Moreover, a fuzzy morphological erosion

can be defined from a degree of inclusion [7] by

computing the degree to which the structuring element

translated at each point x is included in the considered

fuzzy set.
3.2.1. Inclusion from other set operations

In the crisp case, we have for two sets X and Y:

X 4Y 5XhYC Z ;5XC gY Z S: (17)

Using the degree of intersection, we obtain for the degree of

inclusion of m in n:

Iðm; nÞ Z c½mintðm; cðnÞÞ� Z c sup
x2S

t½mðxÞ; cðnðxÞÞ�

� 	

Z inf
x2S

T½cðmðxÞÞ; nðxÞ�; (18)

where t is a t-norm, T is a t-conorm and c is a fuzzy

complementation. This definition leads to the erosion

introduced in Eq. (4).

The properties of the degree of inclusion are directly

derived from those of intersection since the degree of

inclusion of m in n is equal to the degree of non-intersection of

m and c(n):
†
 consistency with the binary definition;
†
 if m is empty ðcx2S; mðxÞZ0Þ then Iðm; nÞ always

equals 1;
†
 if n is empty, then Iðm; nÞ is equal to 0 for normalized

fuzzy sets;
†
 if m is equal to Sðcx2S;mðxÞZ1Þ;Iðm; nÞ is equal to 0 for

bounded support fuzzy sets;
†
 if n is equal to S; Iðm; nÞ is always equal to 1;
†
 invariance with respect to geometrical transformations

(translation, rotation).

A fuzzy inclusion based on integration over a-cuts has

been proposed in Ref. [13]. It consists in computing, for

each a-cut of m and n the ratio ra between the surface of their

intersection ma hna and the surface of na; and then in

integrating ra over a. The main drawback of this approach is

its computational cost.
3.2.2. Axiomatization of fuzzy inclusion

Other methods for defining a degree of inclusion rely on

a set of axioms and on the determination of functions

satisfying these axioms. This is the method adopted for

instance in Refs. [14,15].
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The axioms of Ref. [14] are as follows2:
(1)
2 S

man
Iðm; nÞZ1 iff m4n in Zadeh’s sense, i.e. cx2S;

m(x)%n(x).
(2)
 Iðm; nÞZ0 iff CoreðmÞh ½SuppðmÞ�C s;:

(3)
 I is increasing in n: if n14n2, then Iðm; n1Þ%Iðm; n2Þ:
(4)
 I is decreasing in m: if m14m2, then Iðm1; nÞRIðm2; nÞ:
(5)
 I is invariant under geometric transformations such as

translations, rotations.
(6)
 Iðm; nÞZIðcðnÞ; cðmÞÞ:
(7)
 Iðmgm0; nÞZmin½Iðm; nÞ;Iðm0; nÞ�:
(8)
 Iðm; nhn0ÞZmin½Iðm; nÞ;Iðm; n0Þ�:
(9)
 Iðm; ngn0ÞRmax½Iðm; nÞ;Iðm; n0Þ�:
The degree of inclusion proposed in Ref. [14] according

to these axioms is defined as

c ðm; nÞ2F2; Iðm; nÞ Z inf
x2S

min½1; lðmðxÞÞClð1 KnðxÞÞ�

(19)

where l is a function from [0,1] into [0,1] such that:
†
 l is non-increasing,
†
 l(0)Z1,
†
 l(1)Z0,
†
 the equation l(x)Z0 has a single solution,
†
 ca2[0.5, 1], the equation l(x)Za has a single solution,
†
 ca2[0,1], lðaÞClð1KaÞR1:

A typical example for l is: l(a)Z1Kan, with nR1.

In particular, for nZ1, the degree of inclusion becomes:

Iðm; nÞ Z inf
x2S

min½1; 1 KmðxÞCnðxÞ� (20)

which is exactly the inclusion obtained from intersection or

union (Eq. (18)) for the complementation c(a)Z1Ka and

for the Lukasiewicz t-norm and t-conorm.

Despite the apparent similarity between Eqs. (18) and

(19), they are not equivalent. Indeed, the function defined as

min½1; lð1KaÞClð1KbÞ�; which plays in Eq. (19) the

same role as the t-conorm T in Eq. (18), is actually not a t-

conorm, since it is not associative and it does not admit 0 as

unit element, except for l(a)Z1Ka [7]. This induces a loss

of properties of the inclusion degree in comparison to those

of inclusion derived from a true t-conorm, as it can be seen

for instance for fuzzy mathematical morphology [7].

Another axiomatization has been proposed in Ref. [15].

The axioms for degree of inclusion are the following:
(1)
 Iðm; nÞZ1 iff m4n in Zadeh’s sense, i.e. cx2S;

m(x)%n(x); this is the same as the first axiom of Ref. [14].
(2)
 Let n be such that cx2S; n(x)Z0.5. If n4m, then

Iðm; cðmÞÞZ0 iff mZS (i.e. cx2S; m(x)Z1); this

contrasts with the second axiom of Ref. [14].
ome additional properties are proposed in Ref. [14], but not as

datory. They are skipped in this presentation.
(3)
 if n4m14m2, then Iðm1; nÞRIðm2; nÞ; which is weaker

than axiom 4 of Ref. [14]; if n14n2, then Iðm; n1Þ%
Iðm; n2Þ; which is axiom 3 of Ref. [14].
These axioms are weaker than those of Ref. [14]. They

lead to weaker properties of the degree of inclusion, and also

to weaker properties than the degree of inclusion derived

from t-norms and t-conorms.
3.2.3. Inclusion and fuzzy entropy

Links between degree of inclusion and fuzzy entropy

have been studied by several authors, including Refs. [15,

16]. These links are expressed as

cm2F; IðmgcðmÞ;mhcðmÞÞ Z EðmÞ; (21)

where E(m) denotes the fuzzy entropy of m [17], i.e.

EðmÞ ZK
X
x2S

mðxÞlog mðxÞK
X
x2S

ð1 KmðxÞÞlogð1 KmðxÞÞ:

The definition of degree of inclusion of Ref. [16], defined

for finite S; is

Iðm; nÞ Z
jmhnj

jmj
Z

P
x2S min½mðxÞ; nðxÞ�P

x2S mðxÞ
; (22)

with the convention Iðm; nÞZ1 if cx2S; m(x)Z0. This

expression has been also used on each a-cut in Ref. [13] as

mentioned earlier and is related to Tversky’s measures [18]

(see Section 5.2).

The corresponding fuzzy entropy is then:

EðmÞ Z

P
x2S min½mðxÞ; 1 KmðxÞ�P
x2S max½mðxÞ; 1 KmðxÞ�

: (23)

Another example is the degree of inclusion of Ref. [19],

defined for finite S; as:

Iðm; nÞ Z
1

jSj

X
x2S

min½1; 1 KmðxÞCnðxÞ�: (24)

The corresponding entropy measure is:

EðmÞ Z
1

jSj

X
x2S

min½mðxÞ; 1 KmðxÞ�; (25)

which is the fuzzy entropy of Ref. [20].

This degree of inclusion is similar to the one of Ref. [21],

that relies on the same combination operator but using a

different type of normalization:

Iðm; nÞ Z
infx2Smin½1; 1 KmðxÞCnðxÞ�

supx2SmðxÞ
: (26)

In [15], it is proved more generally that if I is an inclusion

degree that satisfies the three axioms of Ref. [15], then the

measure defined by

cm2F; EðmÞ Z IðmgcðmÞ;mhcðmÞÞ (27)

is a fuzzy entropy measure on S:



Fig. 1. Low discrimination power of the definition of degree of intersection

between two fuzzy sets using the maximum of intersection: mint(m, n 0)Z
mint(m, n), although m and n 0 strongly overlap and should be considered as

more intersecting than m and n.
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3.2.4. Inclusion from fuzzy implication

Finally, inclusion can be defined from implication

[15,22,23], as

Iðm; nÞ Z inf
x2S

Imp½mðxÞ; nðxÞ�; (28)

where Imp[m(x),n(x)] denotes the degree to which m(x)

implies n(x). Fuzzy implication is often defined as [24]

Impða; bÞ Z T½cðaÞ; b�; (29)

from which we recover exactly the same definition of

degree of inclusion as the one obtained from a t-conorm

(Eq. (18)). Another interesting approach is to use residual

implications:

Impða; bÞ Z supf32½0; 1�; tða; 3Þ%bg: (30)

This provides the following expression for the degree of

inclusion:

Iðm; nÞ Z inf
x2S

supf32½0; 1�; tðmðxÞ; 3Þ%nðxÞg: (31)

This definition coincides with the previous one if t is an

Archimedian t-norm with nilpotent elements, typically the

Lukasiewicz t-norm.
3.3. Discussion

Set theoretical operations have a very large interest and

constitute fundamental operations. Their extensions to fuzzy

sets enable the management of imprecision in all applications

of these operations. We already mentioned how degree of

inclusion and degree of intersection can be used for defining

morphological erosion and dilation. Other application

domains include fusion (for instance fusion of two images

providing imprecise spatial location of an object), regis-

tration (for instance based on criteria on the overlap area of

two object images), measure of conflict, measure of

information, etc. All these applications are important

components of spatial reasoning.

The number of possible extensions of operations to fuzzy

sets raises the problem of choosing the most appropriate

definition. Although there is a large overlap between different

classes of definitions and numerous common properties

guaranteeing similar behaviors in practice, one problem

remains concerning the consideration of the spatial overlap-

ping. This problem has already been mentioned for intersec-

tion: the expression supx2St½mðxÞ; nðxÞ� represents the

maximum height of the intersection and may depend on one

point only while not accounting for different overlapping

situations. This is shown in Fig. 1 (for sake of clarity, S is

represented in 1D only).

Such situations are avoided by using the fuzzy volume of

the overlapping area as in Eq. (16) which leads to different

values for mint(m,n) and mint(m,n 0), in accordance with the fact

that m and n 0 have a larger overlap than m and n.

Similar questions occur for the degree of inclusion, since

the definition in Eq. (18) has the same drawback as
the degree of intersection: it may depend on one point

only. Here again, the overlap between both fuzzy sets could

be taken into account.
4. Adjacency

In this section, we consider the important topological

relation of adjacency, often used and important in vision and

image processing, both locally in the neighborhood of a

point and globally when spatial relationships between

objects have to be assessed
4.1. Fuzzy neighborhood

Although we can use neighborhoods according to the

digital topology defined on S; fuzzy neighborhoods can also

be defined, as well as a degree nxy to which two points

x and y are neighbors Several definitions have been

proposed [25,26], which are typically decreasing functions

of the distance between both points

nxy Z
1

1 CdSðx; yÞ
; or nxy Z

1 CexpðKbÞ

1 Cexp b dSðx;yÞK1
S

K1
� � ;

(32)

where dS denotes the Euclidean distance in S and b and S are

two positive parameters which control the shape of the curve.

Other functions can be used, like S-functions for instance.

A lot of work related to this has led to the notion of

degree of connectivity between two points in a fuzzy set

and fuzzy connectedness, expressing to which extent points

hold together to build an object [27,28]. This is merely

a relation between points of a fuzzy set and not really between

two fuzzy sets. It will therefore not be further considered

here.
4.2. Adjacency between two fuzzy objects

Rosenfeld and Klette [29] define a degree of adjacency

between two crisp sets, using a geometrical approach

based on the notion of ‘visibility’ of a set from another one.



Fig. 2. Illustration of Eq. (34) when using different definitions for the

degree of intersection. Using the maximum of the intersection we obtain

madj(m, n)Za1 (Z0.36) and madj(m, n 0)Za3 (Z0.35), and using the fuzzy

hypervolume madj(m, n)Za2 (Z0.67) and madj(m, n 0)Za4 (Z0.34).
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This definition is then extended to degree of adjacency

between two fuzzy sets. However, this definition is not

symmetrical, and probably not easy to transpose to higher

dimensions. Another approach consists in using the notion

of contours, frontiers, and neighborhood [25,26]. We

present here this second approach. The space S is endowed

with a digital connectivity c.

In the crisp digital case, two image regions X and Y are

adjacent if

XhY Z ; and dx2X; dy2Y : ncðx; yÞ; (33)

where nc(x, y) is the Boolean variable stating that x and y are

neighbors in the sense of the digital c-connectivity.

The extension of this definition, as detailed in Ref. [26],

involves a degree of intersection mint(m,n) between two

fuzzy sets m and n defined on S; as well as a degree of non-

intersection mlint(m,n), and a degree of neighborhood nxy

between two points x and y of S: All these notions have been

introduced previously. This leads to the following definition

for fuzzy adjacency between m and n

madjðm; nÞ Z t½mlintðm; nÞ; sup
x2S

sup
y2S

t½mðxÞ; nðyÞ; nxy��; (34)

where t is a t-norm realizing the conjunction between

several conditions.3

This definition is symmetrical, consistent with the

discrete binary definition (i.e. in the case where m and n

are crisp and nxyZnc(x, y)), and decreasing with respect to

the distance between the two fuzzy sets. It is invariant with

respect to geometrical transformations (for scaling, only if

nxy is itself invariant). It should be noted that the condition

in Eq. (33) is achieved for x and y belonging to the boundary

of X and Y, respectively. This constraint could also be added

in the fuzzy extension [26].

Definition (33) can also be expressed equivalently in

terms of morphological dilation, as

XhY Z ; and DBc
ðXÞhY s;; DBc

ðYÞhX s;; (35)

where DBc
ðXÞ denotes the dilation of X by the structuring

element Bc.

The degree of adjacency between m and n involving

fuzzy dilation is then defined as:

madjðm; nÞ Z t½mlintðm; nÞ;mint½DBc
ðmÞ; n�;mint½DBc

ðnÞ;m��:

(36)

This definition represents a conjunctive combination of a

degree of non-intersection between m and n and a degree of

intersection between one fuzzy set and the dilation of the

other. Again the same properties are satisfied. The structuring

element Bc can be taken as the elementary structuring

element related to the considered connectivity (i.e. a central

point and its neighbors as defined by the c-connectivity).
3 Since any t-norm is associative, for the sake of simplicity we denote by

t(a, b, c) the expression t(t(a,b),c).
It can also be a fuzzy structuring element, representing for

instance spatial imprecision (i.e. the possibility distribution

of the location of each point).

4.3. Discussion

The choice of the degree of intersection plays an

important role in the definitions of adjacency between

fuzzy sets. Fig. 2 shows the results obtained with Eq. (34)

with the t-norm minimum. Using the maximum of the

intersection for mint (Eq. (14)) we obtain madj(m, n)Z0.36

and madj(m, n 0)Z0.35, which are very similar values. On the

contrary, using the fuzzy hypervolume to define the degree

of intersection (Eq. (16)), Eq. (34) accounts for the

differences in intersection and provides madj(m, n)Z0.67

and madj(m, n 0)Z0.34, which are this time very different.

Let us now compute this fuzzy adjacency on a few

objects extracted from a real image. As an illustrative

example, a slice of a brain image is shown in Fig. 3. It is

obtained using a T1 weighted acquisition in magnetic

resonance imaging. A few internal structures are
Fig. 3. Magnetic resonance image of a brain (one slice of a 3D volume).



Fig. 4. Top: 5 fuzzy objects representing a few internal brain structures of the image shown in Fig. 3 (membership values rank between 0 and 1, from white to

black). From left to right: right caudate nucleus (cn2), right lateral ventricle (v2), left lateral ventricle (v1), left caudate nucleus (cn1), left putamen (p1).

Bottom: superimposition of these fuzzy objects (the maximum membership value is displayed at each point).
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represented in Fig. 4 as spatial fuzzy sets, where member-

ship degrees are represented using grey levels. The

adjacency degrees between some of these fuzzy objects

are given in Table 2. The results are in agreement with what

can be expected from a brain model (an anatomical atlas for

instance, where objects and adjacency are defined in a crisp

way). Two classes of values are obtained: very low values

which correspond to non-adjacency in the model and a set of

higher values corresponding to adjacency in the model.

In this case, crisp adjacency would provide completely

different results in the model and in the image, preventing its

use for recognition. This suggests that fuzzy adjacency

degrees can indeed be used for pattern recognition purposes,

as introduced in Section 1, of course combined with other

spatial relationships.
Table 2

Results obtained for fuzzy adjacency

Fuzzy object 1 Fuzzy object 2 Degree of

adjacency

Adjacency in

the model

(crisp)

v1 v2 0.368 1

v1 cn1 0.463 1

v1 p1 0.000 0

v1 cn2 0.035 0

v2 cn2 0.427 1

cn1 p1 0.035 0

Labels of structures are given in Fig. 4. High degrees are obtained between

structures where adjacency is expected, while very low degrees are

obtained in the opposite case.
5. Distances

The importance of distances in image processing and

interpretation is well established. Their extensions to fuzzy

sets can be useful in several problems in image processing

under imprecision. Several definitions can be found in the

literature for distances between fuzzy sets (which is the

main addressed problem). They can be roughly divided in

two classes: distances that take only membership functions

into account and that compare them pointwise, and

distances that additionally include spatial distances. The

wide literature on fuzzy similarities, dissimilarities and

distances is rather silent on methods dealing with spatial

information, and, unfortunately, not all approaches are

suitable to this purpose. The presentation given below is

directly inspired by the classification proposed in Ref. [30],

but adapted to image processing and vision purposes, by

underlining for each definition its properties and the type of

image information on which it relies. A complete review

can be found in Ref. [31].
5.1. Representations

Before reviewing the main definitions, we address some

representation issues.

The most used representation of a distance between two

fuzzy sets is as a number d, taking values in R
C (or more

specifically in [0,1] for some of them). However, since we

consider fuzzy sets, i.e. objects that are imprecisely defined,

we may expect that the distance between them is imprecise

too [32,33]. Then, the distance is better represented as a

fuzzy set, and more precisely as a fuzzy number.

In Ref. [33], Rosenfeld defines two concepts that will be

used in the sequel. One is distance density, denoted by

d(m,n), and the other distance distribution, denoted by

D(m,n), both being fuzzy sets on R
C: They are linked

together by the following relation:

Dðm; nÞðnÞ Z

ðn

0
dðm; nÞðn0Þdn0: (37)

While the distance distribution value D(m, n) (n) represents

the degree to which the distance between m and n is less than

n, the distance density value d(m, n) (n) represents the degree

to which the distance is equal to n.
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Histograms of distances inspired from angle histograms

(see Section 6.3), carrying a complete information about

distance relationships but at the price of a heavier

representation, have been introduced in Ref. [31]. They

will not be detailed here.

The concept of distance can be represented as a linguistic

variable. This assumes a granulation [9] of the set of

possible distance values into symbolic classes such as

‘near’, ‘far’, etc. each of these classes being defined as a

fuzzy set. This approach has been drawn, e.g. in Refs. [13,

34,35]. For instance in Ref. [13], the relation ‘far’ is defined

as a decreasing function of the average distance between

both sets.

Finally spatial representations are useful to define the

regions of the space where some distance constraint to a

reference object is satisfied [31,36]. Such constraints are

often expressed as imprecise statements or in linguistic

terms, which reinforces the usefulness of fuzzy modeling.

In the following sections, we will mainly present

methods providing numbers or fuzzy numbers.

5.2. Comparison of membership functions

In this section, we review the main distances proposed in

the literature that aim at comparing membership functions.

They have generally been proposed in a general fuzzy set

framework, and not specifically in the context of image

processing. They do not really include information about

spatial distances. The classification chosen here is inspired

from the one in Ref. [30]. Similar classifications can be

found in Refs. [37–39]. More details and properties are

given in Ref. [31].

The functional approach is probably the most popular

one. It relies on a Lp norm between m and n, leading to the

following generic definition [32,40,41]:

dpðm; nÞ Z

ð
x2S

jmðxÞKnðxÞjp

2
4

3
51=p

; (38)

dNðm; nÞ Z sup
x2S

jmðxÞKnðxÞj: (39)

In the discrete finite case, these definitions use discrete sums

and max, respectively.

A noticeable property of dp is that it takes a constant

value if the supports of m and n are disjoint, irrespectively of

how far the supports are from each other in S:

Among the information theoretic approaches, definitions

based on fuzzy entropy or fuzzy divergence have been

proposed [17,42–44]. But one main drawback of most of

these approaches is that the obtained distance is always

equal to 0 for crisp sets.

In the set theoretic approach, distance between two

fuzzy sets is seen as a dissimilarity function, based on

fuzzy union and intersection. Examples are given in

Ref. [30]. The basic idea is that the distance should be
larger if the two fuzzy sets weakly intersect. Most of the

proposed measures are inspired from the work by Tversky

[18] that proposes two parametric similarity measures

between two sets A and B:

qf ðAhBÞKaf ðA KBÞKbf ðB KAÞ; (40)

and in a rational form

f ðAhBÞ

f ðAhBÞCaf ðAhBCÞCbf ðBhACÞ
; (41)

where f(X) is typically the cardinality of X, and a, b and q

are parameters leading to different kinds of measures.

Let us mention a few examples (they are given in the

finite discrete case). A measure being derived from the

second Tversky measure by setting aZbZ1 has been used

by several authors [5,30,37–39,45,46]:

dðm; nÞ Z 1 K

P
x2S min½mðxÞ; nðxÞ�P
x2S max½mðxÞ; nðxÞ�

: (42)

It does not satisfy the triangular inequality, and always

takes the constant value 1 as soon as the two fuzzy sets

have disjoint supports. It also corresponds to the Jaccard

index [45]. With respect to the typology presented in Ref.

[47], this distance is a comparison measure, and more

precisely a dissimilarity measure. Moreover, 1Kd is a

resemblance measure. Applications in image processing

can be found, e.g. in Ref. [48], where it is used on fuzzy

sets representing object features (and not directly spatial

image objects) for structural pattern recognition on

polygonal 2D objects.

A slightly different formula has been proposed in

Ref. [49] and modified in Ref. [50] in order to achieve

better properties:

dðm; nÞ Z 1 K
1

jSuppðmÞgSuppðnÞj

!
X

x2SuppðmÞgSuppðnÞ

t½mðxÞ; nðxÞ�

T½mðxÞ; nðxÞ�
: (43)

Another measure takes into account only the intersection of

the two fuzzy sets [30,37,39]:

dðm; nÞ Z 1 Kmax
x2S

min½mðxÞ; nðxÞ�: (44)

Again it is a dissimilarity measure, and 1Kd is a

resemblance measure. It is always equal to 1 if the supports

of m and n are disjoint.

If we set ðmnÞðxÞZmax½minðmðxÞ;1KnðxÞÞ;minð1KmðxÞ;

nðxÞÞ�; two other distances can be derived, as [30,39]:

dðm;nÞ ¼ sup
x2S

ðmnÞðxÞ; (45)

dðm;nÞ ¼
X
x2S

ðmnÞðxÞ: (46)
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These two distances are symmetrical measures. They are

separable only for binary sets. Also we have d(m,m)Z0 only

for binary sets. They are dissimilarity measures. The first one

is equal to 1 if m and n have disjoint supports and are

normalized (if they are not normalized, then this constant

value is equal to the maximum membership value of m and n).

The second measure is always equal to jmjCjnj if m and n have

disjoint supports.

These measures actually rely on measures of inclusion of

each fuzzy set in the other (see Section 3.2). Indeed, the

distance should be small if the two sets have a small degree

of equality (the equality between m and n can be expressed

by ‘m included in n and n included in m’, which leads to an

easy transposition to fuzzy equality). Other inclusion

indexes can be defined, e.g. from Tversky measure by

setting aZ1 and bZ0, leading to f(AhB)/f(A) [45]. As an

example, these measures have been applied in image

processing for image database applications in Ref. [39].

The last definitions given by Eqs. (44) and (45) are,

respectively, equivalent to 1KP(m; n) and 1Kmax[N(m;n),

N(n;m)] (where P and N are possibility and necessity

functions) used in fuzzy pattern matching [51,52], which

has a large application domain, including image processing

and vision (see e.g. [53]).

Finally, the pattern recognition approach consists in first

expressing each fuzzy set in a feature space (for instance

cardinality, moments, skewness) and to compute the

Euclidean distance between two feature vectors [30] or

attribute vectors [54]. This approach may take advantage of

some of the previous approaches, for instance by using

entropy or similarity in the set of features. It has been

applied for instance for database applications [54]. A similar

approach, called signal detection theory, has been proposed

in Ref. [39]. It is based on counting the number of similar

and different features. These approaches are somewhat apart

from our main focus since they do not use directly the fuzzy

sets but features extracted from them.
5.3. Combination of spatial and membership comparisons

The second class of methods tries to include the spatial

distance dS (Euclidean distance in S for instance) in the

distance between m and n. In contrary to the definitions

given above, in this second class the membership values at

different points of S are linked using some formal

computation, making the introduction of dS possible. This

leads to definitions that do not share the drawbacks of

previous approaches, for instance when the supports of the

two fuzzy sets are disjoint.

The geometrical approach consists in generalizing one

of the distances between crisp sets. This has been done for

instance for nearest point distance [32,33], mean distance

[33], Hausdorff distance [32], and could easily be extended

to other distances (see e.g. Ref. [55] for a review of crisp set

distances). These generalizations can be obtained according
to a fuzzification by integration over a-cuts (see Section 2)

[30,56].

Another method consists in weighting distances by

membership values. For the mean distance this leads for

instance to [33]:

dðm; nÞ Z

P
x2S

P
y2S dSðx; yÞmin½mðxÞ; nðyÞ�P

x2S

P
y2S min½mðxÞ; nðyÞ�

: (47)

A third approach consists in defining a fuzzy distance as a

fuzzy set on R
C instead of as a crisp number using the

extension principle (see Section 2). For the nearest point

distance this leads to [33]:

dðm; nÞðrÞ Z sup
x;y;dSðx;yÞ%r

min½mðxÞ; nðyÞ�: (48)

A similar approach has been used in Ref. [57], and the

corresponding distance density is expressed as:

dðm; nÞðrÞ Z sup
x;y;dSðx;yÞZr

min½mðxÞ; nðyÞ�; (49)

The fuzzy extension of the Hausdorff distance is probably

the most widely studied of all the fuzzy extensions of

distances between sets. One reason for this may be that it is a

true metric in the crisp case, while other set distances like

minimum or average distances have weaker properties.

Another reason is that it has been used to determine a degree

of similarity between two objects, or between an object and

a model [58]. Extensions of this distance have been defined

using fuzzification over the a-cuts and using the extension

principle [30,59,60–62]. One potential problem with these

approaches occurs in the case of empty a-cuts [63,64].

Boxer [62] proposed to add a crisp set to every set, but the

result is highly dependent on this additional set, and does

not reduce to the classical Hausdorff distance when applied

on crisp sets. The solution proposed in Ref. [63] consists in

clipping the distance at some maximum distance, but similar

problems arise. Other authors use the Hausdorff distance

between the endographs of the two membership functions

[60] (but the additional dimension has not the same meaning

as the spatial dimension). Several generalizations of

Hausdorff distance have also been proposed under the

form of fuzzy numbers [32]. Extensions of the Hausdorff

distance based on fuzzy mathematical morphology has also

been developed [65] and is presented below.

These distances share most of the advantages and

drawbacks of the underlying crisp distance [55]: compu-

tation cost can be high (it is already high for several crisp

distances); moreover, interpretation and robustness strongly

depend on the chosen distance (for instance, Hausdorff

distance may be noise sensitive, whereas average distance is

less). Extensions of these definitions may be obtained

by using other weighting functions, for instance by using

t-norms instead of min.

A morphological approach has been proposed in Refs.

[65,66]. We just give the examples of nearest point distance

and Hausdorff distance. The main idea here is to use links
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between distances and morphological dilations to derive

algebraic expressions of distances (instead of classical

analytical ones), which are then easy to translate into fuzzy

expressions.

In the binary case, and in a digital space S; for nO0, the

nearest point distance dN can be expressed in morphological

terms as

dNðX;YÞ Z n5DnðXÞhY s; and DnK1ðXÞhY Z ;
(50)

and the symmetrical expression. For nZ0 we have: dNðX;

YÞZ05XhY s;: The translation of these equivalences

provides, for nO0, the following distance density

dNðm;m
0ÞðnÞ

Z t sup
x2S

t½m0ðxÞ;Dn
nðmÞðxÞ�; c sup

x2S

t½m0ðxÞ;DnK1
n ðmÞðxÞ�

� 	� 	
(51)

or a symmetrical expression derived from this one, and dN

ðm;m0Þð0ÞZsupx2St½mðxÞ;m0ðxÞ� (i.e. a degree of intersection

as in Eq. (14)).

Like for the nearest point distance, we can extend the

Hausdorff distance by translating directly the binary

equation defining the Hausdorff distance:

dHðX;YÞ Z max sup
x2X

dSðx;YÞ; sup
x2Y

dSðy; YÞ

� 	
: (52)

This distance can be expressed in morphological terms as:

dHðX;YÞ Z inffn;X 4DnðYÞ and Y 4DnðXÞg: (53)

From Eq. (53), a distance distribution can be defined,

involving fuzzy dilation

DHðm;m
0ÞðnÞ

Z t inf
x2S

T½Dn
nðmÞðxÞ; cðm

0ðxÞÞ�; inf
x2S

T½Dn
nðm

0ÞðxÞ; cðmðxÞÞ�

� 	
;

(54)

where c is a complementation, t a t-norm and T a t-conorm.

A distance density can be derived implicitly from this

distance distribution.

A direct definition of a distance density can be obtained

from: dH(X,Y)Z05XZY, and for nO0:

dHðX;YÞZn5X4DnðYÞ and Y 4DnðXÞ and ðX<DnK1ðYÞ

or Y <DnK1ðXÞÞ: ð55Þ

Translating these equations leads to a definition of the

Hausdorff distance between two fuzzy sets m and m0 as a

fuzzy number:

dHðm;m
0Þð0Þ

Z t inf
x2S

T½mðxÞ;cðm0ðxÞÞ�; inf
x2S

T½m0ðxÞ;cðmðxÞÞ�

� 	
; (56)
dHðm;m
0ÞðnÞ

Z t inf
x2S

T½Dn
nðmÞðxÞ;cðm

0ðxÞÞ�; inf
x2S

T½Dn
nðm

0ÞðxÞ;cðmðxÞÞ�;

�

T sup
x2S

t½mðxÞ;cðDnK1
n ðm0ÞðxÞÞ�;sup

x2S

t½m0ðxÞ;cðDnK1
n ðmÞðxÞÞ�

� �	
(57)

The above definitions of fuzzy nearest point and Hausdorff

distances (defined as fuzzy numbers) between two fuzzy

sets do not necessarily share the same properties as their

crisp equivalent. All distances are positive, in the sense that

the defined fuzzy numbers have always a support included

in R
C: By construction, all defined distances are symmetri-

cal with respect to m and m0. The separability property is not

always satisfied. However, if m is normalized, we have for

the nearest point distance dN(m,m) (0)Z1 and dN(m,m) (n)Z0

for nO1. For the Hausdorff distance, dH(m,m0) (0)Z1

implies for T being the bounded sum (T(a, b)Zmin(1, aC
b)), while it implies m and m0 crisp and equal for TZmax.

Also the triangular inequality is not satisfied in general.

Another morphological approach has been suggested in

Ref. [67], based on links between the minimum distance

and the Minkowski difference. In the crisp case, we have

dNðX;YÞZ inffjzj; z2Y2Xg; if X and Y are non-intersect-

ing crisp sets. In order to account for possible intersection

between the two sets, the authors introduce also the notion

of penetration distance, defined along a direction s as the

maximum translation of X along s such that X still meets

Y : dðs;X;YÞZmaxfk; ðXCksÞhY s;g: The extension to

fuzzy sets is done by assuming fuzzy numbers on each axis.

This leads to nice reasonable computation times, but can

unfortunately not be directly extended to any fuzzy objects

because of this assumption.

A tolerance-based approach has been developed in Ref.

[41]. The basic idea is to combine spatial information and

membership values by assuming a tolerance value t,

indicating the differences that can occur without saying

that the objects are no more similar. Note that this approach

has strong links with morphological approaches, since the

neighborhood considered around each point can be

considered as a structuring element.

According to a graph theoretic approach, a similarity

function between fuzzy graphs may also induce a distance

between fuzzy sets. This approach contrasts with the

previous ones, since the objects are no more represented

directly as fuzzy sets on S or as vectors of attributes, but as

higher level structures. Fuzzy graphs in structural recog-

nition can be used for representing objects, as in Ref. [68], or

a scene, as in Ref. [69]. In the first case, nodes are parts of the

objects and edges are links between these parts. In the second

case, nodes are objects of the scene and edges are

relationships between these objects. These two examples

use different ways to consider distances (or similarity)

between fuzzy graphs. In Ref. [68], the distance is defined
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from a similarity between nodes and between edges (both

being fuzzy sets), given a correspondence between nodes

(respectively between edges). The similarity used compares

only membership functions, using a set theoretic approach

(see Section 5.2) and corresponds to Eq. (42). Although it has

not been considered in this reference, spatial distance can

then be taken into account if we include it in the attribute set.

This idea is probably worth to be further developed. In a

similar way, several distances between graphs have been

proposed as an objective function to find the correspondence

between graphs. This function compares attributes of nodes

of the two graphs to be matched, and attributes of arcs. One of

the main difficulties is to deal with non-objective matching.

This has been addressed for instance in Refs. [70–72], where

a formalism for defining fuzzy morphisms between graphs is

proposed, as well as optimization methods for finding the

best morphism according to an objective function including

spatial distance information as an edge attribute. Another

way to consider distances between objects is in terms of cost

of deformations to bring one set in correspondence with the

other. Such approaches are particularly powerful in graph-

based methods. The distance can then be expressed as the

cost of the matching of two graphs, as done in Ref. [69] for

image processing applications, or as the Levensthein

distance accounting for the necessary transformations

(insertions, substitutions, deletions) for going from the

structural representation of one shape to the representation

of the other [73]. In Ref. [69], the fuzzy aspect is taken into

account as weighting factors, therefore the method is quite

close to the weighted Levensthein distance of Ref. [73].

Spatial distances could also be introduced as one of the

relationships between objects in these approaches. A

distance between conceptual graphs is defined in Ref. [74],

as an interval [N, P] where N represents the necessity and P
the possibility, obtained by a fuzzy pattern matching

approach. Although the application is not related to image

processing, the idea of expressing similarity as an interval is

interesting and could certainly be exploited in other domains.

A second interest of this approach is that the nodes of the

graph are concepts, which could be (although not explicitly

mentioned in this reference) represented as fuzzy sets (like

linguistic variables). Although these examples are still far

from the main concern of this paper, it is worth mentioning

them, since they bring an interesting structural aspect that

could be further developed.

5.4. Discussion

In the first class of methods (Section 5.2), the only way m

and n are combined is by computation linking m(x) and n(x),

i.e. only the memberships at the same point of S: No spatial

information is taken into account. A positive consequence is

that the corresponding distances are easy to compute. The

complexity is linear in the cardinality of S: Considering

image processing and vision applications, we suggest that

the first class of methods (comparing membership functions
only) be restricted when the two fuzzy sets to be compared

represent the same structure or a structure and a model.

Applications in model-based or case-based pattern recog-

nition are foreseeable.

On the other hand, the definitions which combine spatial

distance and fuzzy membership comparison (Section 5.3)

allow for a more general analysis of structures in images, for

applications where the topological and spatial arrangement

of the structures of interest is important (segmentation,

classification, scene interpretation). This is enabled by the

fact that these distances combine membership values at

different points in the space, therefore taking into account

their proximity or farness in S: The price to pay is an

increased complexity, generally quadratic in the cardinality

of S:

When facing the problem of choosing a distance, several

criteria can be used. First, the type of application at hand

plays an important role. While both classes of methods can

be used for comparing an object and a model object, only

the second class can be used for evaluating distances

between objects in the same image. Among the distances of

the first class, the results we obtained show that entropy and

divergence-based approaches are not satisfactory. Also

normalized distances should be avoided in most cases. The

choice among the remaining distances can be done by

looking at the properties of the distances (for instance, do

we need d(m,m)Z0 for the application at hand?), and at the

computation time. Among the distances of the second class,

similar choice criteria can be used. Although we may speak

about distances between image objects in a very general

way, this expression does not make necessarily the

assumption that we are dealing with true metrics. For

several applications in image processing, it is not sure that

all properties are needed. For instance the triangular

inequality is not always a requirement.

In order to illustrate the differences between various

definitions, we have computed distances from all structures

shown in Fig. 4 to v2, using most of the definitions reviewed in

this paper. The results obtained with the distances of the first

class are summarized in Table 3. For definitions involving

min and max as intersection and union, we computed the

results obtained with extended definitions, using other

t-norms and t-conorms. The results using distances of the

second class are given in Table 4 for the geometrical

approach, and in Table 5 for the morphological approach.

As can be observed from Table 3, the dp distances (lines

1–3) are not able to differentiate the structures with respect

to v2: a value 0 is obtained for v2 (since dp(m,m)Z0) and for

all other objects almost the same value is obtained. The

problem of the constant value if the supports of m and n are

disjoint can also be observed: in this example, v2 and nc1

have disjoint supports, as well as v2 and t1. Using these

distances, nc1 and t1 have the same distance to v2, although

t1 is farther from v2 than nc1 in S:

Since the distance based on fuzzy entropy (line 4)

does not combine points of m with points of n, but only



Table 3

Distances between fuzzy sets of Fig. 4 using the definitions involving comparison of membership functions only

Distance between v2 and:

nc2 v2 v1 nc1 t1

1 dN 1.000 0.000 0.996 1.000 1.000

2 d1 255.510 0.000 289.718 317.380 322.078

3 d2 13.348 0.000 13.532 15.054 14.849

4 Fuzzy entropy 40.831 0.000 127.679 55.575 87.030

5 Fuzzy divergence 164.720 0.000 125.834 0.000 0.000

6 Pappis (diff/sum) 0.945 0.000 0.957 1.000 1.000

7 1-sum of t over sum of T (tZmin) 0.971 0.000 0.978 1.000 1.000

8 1-sum of t over sum of T (tZprod) 0.989 0.644 0.992 1.000 1.000

9 1-sum of t over sum of T (Lukasiewicz) 1.000 0.821 1.000 1.000 1.000

10 1-norm. sum of t over T (tZmin) 0.126 0.000 0.165 0.163 0.168

11 1-norm. sum of t over T (tZprod) 0.129 0.049 0.169 0.163 0.168

12 1-norm. sum of t over T (Lukasiewicz) 0.131 0.055 0.170 0.163 0.168

13 1-max of inter. (min) 0.667 0.110 0.749 1.000 1.000

14 1-max of inter. (product) 0.890 0.208 0.910 1.000 1.000

15 1-max of inter. (Lukasiewicz) 1.000 0.220 1.000 1.000 1.000

16 max of non-inclusion (min) 1.000 0.498 0.996 1.000 1.000

17 max of non-inclusion (product) 1.000 0.247 0.997 1.000 1.000

18 max of non-inclusion (Lukasiewicz) 1.000 0.000 0.997 1.000 1.000

19 norm. sum of non-incl. (min) 0.053 0.011 0.060 0.064 0.065

20 norm. sum of non-incl. (product) 0.053 0.007 0.060 0.064 0.065

21 norm. sum of non-incl. (Lukasiewicz) 0.052 0.000 0.059 0.064 0.065
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a global measure of the fuzzy sets, made separately, the

results can even be counter-intuitive. In this example,

nc1 has a lower distance to v2 than v1, although v1 is

closer to v2 than nc1 in S (spatially). For the fuzzy

divergene (line 5), similar problems occur: some counter-

intuitive results are obtained, nc1 and t1 have a null

distance to v2.

The distances presented in lines 6–18 are not able to

differentiate between nc1 and t1, and even v1 and nc2. Very

similar values are obtained for all these structures, although

they are spatially at very different distances from v2.

The property d(m, m)Z0 does not always hold (see lines 8, 9,

11–17). In lines 19–21, similar problems are observed.

Additionally, the normalization leads to very low values for

all structures. This is a general problem due to normal-

ization for all these distances.

Using distances taking into account spatial information,

more satisfactory results are obtained. Using the geometri-

cal approach (Table 4), the lowest value is always obtained

for v2. A null value is obtained only using the minimum
Table 4

Distances between fuzzy sets of Fig. 4 using the geometrical approach: weighted a

a-cuts) of mean, min and Hausdorff distances

Distance between v2 and:

nc2 v2

Weighted mean dist. (min) 16.296 8.165

Weighted mean dist. (prod) 16.174 7.501

Weighted mean dist. (Lukasiewicz) 16.096 5.855

Integral of mean dist. 14.536 5.145

Integral of min dist 1.696 0.000

Integral of Hausdorff dist 19.068 0.000
and the Hausdorff distances, since they are the only ones

which satisfy d(m,m)Z0. Objects nc2 and v1 have similar

distances to v2, as it appears in Fig. 4.

Then nc1 is found farther, and then t1. These results fit well

the intuition. Using different t-norms in the weighted average

distance changes the absolute values that are obtained,

but not the ranking. Since the following inequalities hold:

c(a, b)2[0,1]2, maxð0; aCbK1Þ%ab%minða; bÞ; similar

inequalities between the derived distances are obtained. For

this distance, the choice of the t-norm is not really important,

since it does not change the properties of the distance, and for

image processing purposes, the ranking between distance

values is often more important that their absolute value.

All previous examples provide results as numbers. When

using the morphological approach, the results take the form

of fuzzy numbers as seen in Table 5. The curves in this table

show the degrees to which the distance is equal to n as a

function of n. Again the results fit well the intuition. The

distributions obtained for v2 are concentrated on the low

distance values. Then, when the structures become farther
verage distance using 3 different t-norms, fuzzification (using integral over

v1 nc1 t1

16.402 22.820 36.762

15.402 22.668 36.589

13.574 22.502 36.299

12.897 20.298 32.453

2.071 8.937 23.204

21.944 25.373 35.952



Table 5

Distances between fuzzy sets of Fig. 4 using the morphological approach, for the nearest point distance and the Hausdorff distance, using two different t-norms
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from v2, the curves are shifted towards higher distance

values. Here again, the choice of a specific t-norm is not

crucial as it changes mainly the absolute values. Lower

membership degrees are obtained when using a smaller

t-norm.

The fact that the Hausdorff distance provides higher

values than the nearest point distance corresponds to the fact

that the size of the dilation applied to one set needed to reach

the other is less than the size of the dilation needed to
completely include the other set. This is the case for crisp

sets, and the same property holds in the fuzzy case.
6. Directional relative position between objects

Now we consider a completely different type of

relationships, directional relative position, which is a

typical example of relations that defy precise definitions.
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Although such relations are very important and explicitly

mentioned by Freeman and by Kuipers, crisp definitions are

clearly not appropriate. Therefore, in this case, the general

principles presented in Section 2 cannot be applied. The

usual way to consider such relations in common language is

as a matter of degree and in a non-exclusive manner (several

relations between two given objects can be satisfied to some

degree). Fuzzy set theory appears then as an appropriate tool

for such modeling even for crisp sets. The main fuzzy

approaches are reviewed here. More details can be found in

Ref. [75].
6.1. Fuzzy relations describing relative position

In Refs. [10,76], the angle between the segment joining

two points a and b and the x-axis of the coordinate frame (in

2D) is computed. This angle, denoted by q(a, b), takes

values in [Kp,p], which constitutes the domain on which

primitive directional relations are defined.

The four such relations ‘left’, ‘right’, ‘above’ and

‘below’ are defined in Ref. [10] as cos2q and sin2q

functions. Other functions are possible: in Ref. [76]

trapezoidal shaped membership functions are used, for the

same relations. Whatever the equations, the membership

functions for these relations are denoted by mleft, mright,

mabove, and mbelow, and are functions from [Kp,p] into [0,1].

The equations are chosen according to simplicity (e.g. cos or

sin functions), to the fact that they define a fuzzy partition of

[Kp,p], and to their invariance properties with respect to

rotation (i.e. a rotation should correspond to a translation of

the membership functions).

In the work relying on these definitions, only these four

basic directions are used, other relations being expressed in

terms of these. However, we can propose a straightforward

extension to any direction. In 2D, a direction is defined by

an angle a with the x-axis. Using this convention, the

relationship ‘right’ corresponds to aZ0. From mrightZm0,

we derive ma; representing the relationship ‘in direction a’,

for any a as follows

cq; maðqÞ Z m0ðq KaÞ (58)

with for instance:

m0ðqÞ Z
cos2ðqÞ if q2 K

p

2
;C

p

2

h i
0 elsewhere

(
(59)

This makes the definitions based on angle computation more

general. Moreover, it guarantees geometric invariance.

Another solution for defining relations intermediate

between the four basic ones can be based on logical

combinations of these four basic relations. For instance,

‘oblique right’ is defined by ‘(above and right of) or (below

and right of)’. The advantage of this approach is that only

four membership functions have to be defined, which is

consistent with the usual way of speaking about relative

position. The drawback is that, contrary to the definition
proposed in Eq. (58), we cannot achieve a great precision in

direction using this approach. Also, the shape of the

membership function will vary depending on the considered

direction, leading to a high anisotropy and therefore a loss

of rotation invariance, while it remains the same using

Eq. (58).
6.2. Centroid method

A first simple solution to evaluate a fuzzy relationship

between two objects consists in representing each object by

a characteristic point. This point is chosen as the object

centroid in Refs. [13,76]. Let cR and cA denote the centroids

of objects R and A. The degree of satisfaction of the

proposition ‘A is to the right of R’ is then defined as

mR
rightðAÞ Z mrightðqðcR; cAÞÞ; (60)

where the membership function mright is defined as in

Section 6.1. Extension to fuzzy objects can be done in two

ways. One way consists in computing a weighted centroid,

where the contribution of each object point is equal to its

membership value. The second way consists in applying the

definition for binary objects on each a-cut and then

aggregating the results using a summation [56], or the

extension principle [77]. However, this second method may

be computationally expensive, depending on the quantiza-

tion of the object membership values.
6.3. Histogram of angles: compatibility method

The method proposed in Refs. [10,78] consists in

computing the normalized histogram of angles and in

defining a fuzzy set in [0,1] representing the compatibility

between this histogram and the fuzzy relation. More

precisely, the angle histogram is computed from the angle

between any two points in both objects as defined before,

and normalized by the maximum frequency. Let us denote

by HR(A) this normalized histogram, where R is the

reference object and A the object the position of which

with respect to R is evaluated. HR(A) represents the spatial

directional relations of the object A with respect to the

reference object R. Expressing HR(A) in terms of the basic

relations can be performed using compatibility (see Section

2) of the two fuzzy sets ma (for some direction a of interest)

and HR(A). The center of gravity of the compatibility fuzzy

set provides then a global evaluation.

Another solution is to use a fuzzy pattern matching

approach [51,52] (between ma and HR(A)) by computing

both the degree of inclusion of ma in HR(A) and their degree

of intersection using the definitions of Section 3, as

suggested in Ref. [79]. Then, the global evaluation is

given in the form of a pair necessity/possibility.

The fuzzy extension of this method is based on a

weighted histogram [10] which is equivalent to compute
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a histogram on each a-cut and to combine the obtained

results by summation as in Ref. [56].

6.4. Aggregation method

An aggregation method has been proposed in Refs. [13,

76], which uses all points of both objects instead of only one

characteristic point. For any pair of points i in R and j in A,

the angle q(i, j) is computed, and the corresponding

membership value for a direction a (being one of the four

considered relations) is computed as previously: mij Z
maðqði; jÞÞ: All these values are then aggregated. The

aggregation operator suggested in Ref. [76] is a weighted

mean.

6.5. Histogram of forces

Instead of considering pairs of points as in angle

histogram approaches, pairs of longitudinal sections are

considered in Ref. [80], where the concept of F-histogram is

introduced. The degree to which an object A is in the

direction a with respect to a reference object R is computed

using successively points, segments, and longitudinal

sections. This leads to a so called ‘histogram of forces’

which allows to compute the weight supporting a prop-

osition like ‘object A is in direction a from object R’.

Basically, this approach amounts to considering a weighted

angle histogram

HRðAÞðqÞ Z
X

a;b;qða;bÞZ0

4ðjj ~abjjÞ; (61)

where 4 is a decreasing function. Typically, 4ðxÞZ1=xr:

For rZ0, the weighted histogram is equal to the angle

histogram, and for rR1, it gives more importance to points of

A that are close to some points of R. This allows to deal with

situations where A and R have very different partial extents,

and to account only for the closest parts of them.

6.6. Projection based approach

The approach proposed in Ref. [81] is very different

from the previous ones since it does not use any histogram.

It is based on a projection of the considered object on the

axis related to the direction to be assessed (e.g. the x-axis

for evaluating the relations ‘left to’ and ‘right to’). Let us

detail the computation for the relation ‘A is left from R’.

The same construction applies for any direction. Let us

denote by Rf(x) the normalized projection of the set R on

the x-axis. The degree for a point x to be left to R is

defined as:

R)ðxÞ Z

ÐCN
x Rf ðyÞdyÐCN
KN Rf ðyÞdy

: (62)

This definition provides a degree of 1 for points that are

completely on the left of the support of Rf and a degree of
0 for points that are completely on the right of the support

of Rf, and the degree decreases in-between.

Let us now introduce a second set A. The degree (A)
R)f(x) to which x is in the projection of A and to the left of R

is expressed as a conjunction of Af(x) and R)(x). The

conjunction is taken as a product in Ref. [81]. The degree to

which A is left from R is then deduced as the ratio of

the areas below (A)R)f and Af:

mR
aðAÞ Z

ÐCN
KN Af ðxÞ

ÐCN
x Rf ðyÞdy dxÐCN

KN Af ðyÞdy
ÐCN
KN Rf ðyÞdy

: (63)

This approach can be generalized to fuzzy sets [81] by

taking each point into account in the projection to the

amount of its membership function, leading to similar

properties as in the crisp case.

6.7. Morphological approach

In Refs. [79,82,83], a morphological approach has been

proposed in order to evaluate the degree to which an object

A is in some direction with respect to a reference object R,

consisting of two steps (note that this approach applies

directly in 3D and on fuzzy objects):
(1)
 A fuzzy landscape is first defined around the reference

object R as a fuzzy set such that the membership value

of each point corresponds to the degree of satisfaction

of the spatial relation under examination. This makes

use here of a spatial representation of the relation.

Therefore, the fuzzy landscape maðRÞ is directly defined

in the same space as the considered objects, contrary to

the projection method [81], where the fuzzy area is

defined on a one-dimensional axis.
(2)
 Then the object A is compared to the fuzzy landscape

maðRÞ; in order to evaluate how well the object matches

with the areas having high membership values (i.e.

areas that are in the desired direction). This is done

using a fuzzy pattern matching approach, which

provides an evaluation as an interval or a pair of

numbers instead of one number only.
The evaluation of relative position of A with respect to R

is given by a function of maðRÞðxÞ and mA(x) for all x2S:

The histogram of maðRÞ conditionally to mA is such a

function. While this histogram gives the most complete

information about the relative spatial position of two

objects, it is difficult to reason in an efficient way with it.

A summary of the contained information could be more

useful in practice. An appropriate tool for defining this

summary is the fuzzy pattern matching approach [52],

which provides an evaluation as two numbers: a necessity

degree N (a pessimistic evaluation) defined as a degree of

inclusion and a possibility degree P (an optimistic

evaluation) defined as a degree of intersection. They can

also be interpreted in terms of fuzzy mathematical

morphology, since the possibility is equal to the dilation
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of mA by maðRÞ at origin, while the necessity is equal to the

erosion, as shown in Ref. [7]. These two interpretations, in

terms of set theoretic operations and in terms of morpho-

logical ones, explain how the shape of the objects is taken

into account.

Several other functions combining maðRÞ and mA(x) can

be constructed. The extreme values provided by the fuzzy

pattern matching are interesting because of their morpho-

logical interpretation, and because they provide a pair of

extreme values and not only a single value and may better

capture the ambiguity of the relation if any. One drawback

of these measures is that they are sensitive to noise, since

they rely on infimum and supremum computation. An

average measure can also be useful from a practical point of

view (it is much less sensitive to noise).

The key point in the previous definition relies in the

definition of maðRÞ: The requirements stated above for this

fuzzy set are not strong and leave room for a large spectrum

of possibilities. This flexibility allows the user to define any

membership function according to the application at hand

and the context requirements. The definition proposed in

Ref. [82] looks precisely at the domains of space that are

visible from a reference object point in the desired direction.

This applies to any kind of objects, including those having

strong concavities.

This amounts to dilate mR by a fuzzy structuring element

defined on S as

cP2S; nðPÞ Z max 0; 1 K
2

p
arccos

~OP,~ua

jj ~OPjj

" #
; (64)

(or another function having the same variations) where O is

the center of the structuring element. This morphological

definition is shown in Fig. 5.
6.8. Surround

From directional relations, more complex relations such

as ‘surround’ can be defined. In Ref. [78], the tangent lines

to an object A originating from a point of an object B are

computed, as well as the angle q between these lines. Then

the degree of surroundness is defined as:

msurroundðqÞ Z cos2 q

2
if 0%q%p

0 otherwise

8<
: (65)
Fig. 5. Left: a fuzzy reference object. Right: fuzzy landscape representing

the relationship ‘to the left of’ obtained by a fuzzy dilation by a directional

structuring element.
If B is not reduced to a point, q is defined for each point of B

and the set of obtained values is handled as for the

directional relations. A similar approach has been proposed

in Ref. [13], but with a linear function of q instead of a

trigonometric one. The extension to fuzzy sets is done by

integration over a-cuts, which can be computationally

heavy. This type of definition is not necessarily adapted to

any types of shapes and is difficult to extend to 3D objects.

Slightly different approaches for visual surroundness and

topological surroundness have been proposed in Ref. [29].

Another approach consists in combining in a disjunctive

way several directional relations such as left, right, above,

below, etc. [78,82,83], which extends directly to 3D and to

fuzzy objects. But the difficulty is to distinguish between

situations where A surrounds B and situations where B

surrounds A.

6.9. Discussion

A formal comparison of these approaches is given in Ref.

[75], based on their properties, the type of basic elements on

which they rely, their behavior in extreme situations, in case

of concavities, of distant objects, and on their computational

cost. The main conclusions that can be drawn are as follows.

While most approaches reduce the representation of objects

to points, segments or projections, only the morphological

approach considers the objects as a whole and therefore

better accounts for their shape. Approaches providing

evaluation as intervals or fuzzy numbers are better suited

for representing the ambiguity inherent to such relation-

ships. If the distance between objects increases, an object is

seen as a point from the reference object, which could be

intuitively expected, for all methods but the projection

approach. All approaches have a similar complexity, except

the centroid method which is computationally simpler but

which also reduces too much the information.

The extension to 3D objects requires to represent a

direction by two angles, which generally increases the

complexity. The extension of the angle histogram method to

3D objects amounts to computing a bi-dimensional

histogram, i.e. as a function of these two angles, and then

applying the same principle using the relations defined in

3D. The computation of the histogram is heavy in 2D, and

becomes even more so in 3D. Another problem when

computing bi-histograms is that the domain of possible

angle values may be underrepresented, depending on the

size and the sampling of the considered objects. This may

result in a noisy and hole containing histogram. This effect

already appears in 2D. Extension of the force histogram

method to 3D objects could be probably done, but with a

high complexity. The morphological approach is directly

applicable in 3D, without changing the complexity with

respect to the number of points. All approaches can been

extended to fuzzy objects using their a-cuts, at the price of a

high computational cost. The morphological approach can

be directly applied, without cost increase. The angle



Fig. 6. Two examples where the relative position of objects with respect to

the reference object is difficult to define in a ‘all-or-nothing’ manner.
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histogram approach can be extended easily too, by

computing weighted histograms.

Another aspect that is very important is the type of

questions each definition is able to answer, or dedicated to.

This could be the main ingredient for a choice among all

possible approaches. These questions can take different

forms, e.g.
†

Tab

Rel

mo

Rel

Lef

Rig

Bel

Ab

An

Tab

Rel

[N,

Rel

Lef

Rig

Bel

Ab

An
what are the spatial relationships between two given

objects?
†
 to which degree a given spatial relation holds between

two objects?
†
 what are the regions of the space where a spatial

relationship is satisfied (to some degree) with respect to a

reference object?

An important feature of angle histogram and force

histogram is that they provide a general description of the

directional relationships. From this general information,

several ones can be deduced, as the degree of satisfaction of

one specific relationship (for a particular direction), or the

dominant relationship. This is not easy to obtain with
le 6

ative position of object A (rectangle) with respect to object R (square) of F

rphological approach (the [N, P] intervals are given, as well as the average v

ation Centroid Aggregation

rZ0 rZ2 rZ5

t 0.00 0.00 0.00 0.00

ht 0.76 0.73 0.79 0.86

ow 0.00 0.00 0.01 0.01

ove 0.24 0.27 0.20 0.13

gle or force histograms are computed using rZ0, rZ2 and rZ5 (the angle hi

le 7

ative position of object B with respect to object R of Fig. 6, using centroid, agg

P] intervals are given, as well as the average value)

ation Centroid Aggregation

rZ0 rZ2 rZ5

t 0.00 0.00 0.00 0.01

ht 0.83 0.63 0.54 0.33

ow 0.00 0.03 0.02 0.01

ove 0.17 0.34 0.43 0.66

gle or force histograms are computed using rZ0, rZ2 and rZ5.
the morphological approach, that needs one computation for

each direction of interest. This approach is more dedicated

to cases where we are interested in specified relations.

For problems where we have to assess the relative

position of several objects with one reference object, the

morphological approach may be more appropriate if the

computation time is a strong requirement.

Another advantage of the morphological approach is that

the first step directly provides a spatial representation of a

directional constraint with respect to a reference object (thus

answering the third type of question), which can be used in

order to guide the search for another object [36,84].

In order to illustrate the reviewed definitions, we choose

two simple examples, shown in Fig. 6. Despite their

apparent simplicity, they lead to eloquent results, and

allow us in particular to show how different parts of the

objects can be taken into account.

Table 6 shows the results for object A with respect to object

R, according to various methods. They all agree to say that A is

mainly to the right of R. The degree of being to the right

increases with the value of r, since the part of A which is to the

right of R is the closest one to R. On the contrary, the degree of

being above decreases with r. The values are somewhat

different for all approaches, but since the ranking and the

general behavior is the same, no conclusion concerning a

more favorable approach can be derived from this example.

Table 7 shows the results for object B with respect to

object R. For these objects, two main relations are satisfied:

right and above. The centroid method does not account well

for the above relation, for which it gives a very low value.

This shows one of the limitations of this approach, which is

too simple in that it reduces too much the data. Since the part
ig. 6, using centroid, aggregation, compatibility methods, and using the

alue)

Compatibility Morpho. approach,

[N, P] average
rZ0 rZ2 rZ5

0.00 0.00 0.00 [0.00, 0.00] 0.00

0.62 0.67 0.75 [0.50,1.00] 0.81

0.05 0.06 0.06 [0.00, 0.35] 0.05

0.38 0.33 0.25 [0.00, 0.73] 0.44

stogram method corresponds to rZ0).

regation, compatibility methods, and using the morphological approach (the

Compatibility Morpho. approach,

[N, P] average
rZ0 rZ2 rZ5

0.05 0.06 0.08 [0.00, 0.44] 0.02

0.55 0.49 0.35 [0.29, 1.00] 0.81

0.17 0.16 0.15 [0.00, 0.60] 0.11

0.45 0.51 0.65 [0.00,1.00] 0.52
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of B which is above R is closer than the one to its right, the

values of being right decrease with r while the values of being

above increase. The morphological approach highlights the

ambiguity of the relations for these objects. Parts of B satisfy

completely the above relation for instance, while other parts

do not satisfy it at all. The non-zero degrees obtained for the

relation below for instance are due to some points of B that

are indeed partially below R.
7. Conclusion

We briefly presented in this paper the main fuzzy

approaches to define spatial relationships, as well as some

comparative discussions. More details as well as illustrative

examples can be found in the referenced papers.

The most representative relationships according to

Freeman [2] and Kuipers [3,4] have been addressed.

However, other relations may be useful for scene descrip-

tion, interpretation and recognition. For instance, symmetry

can play an important role in several applications. Exact

symmetry usually does not exist in real objects and one has

to deal with approximate symmetries. Many works quantify

the degree of symmetry using a symmetry measure often

based on a distance. However, except in Ref. [85], most

results have been obtained for precisely defined objects. In

Ref. [86], a symmetry measure is defined, which character-

izes the degree of symmetry of a fuzzy object or between

two fuzzy objects with respect to a given plane. This degree

is based on a measure of comparison or similarity between

the object and its reflection (or the reflection of the second

object) with respect to this plane. It would be also

interesting to address other relationships such as ‘between’

(a ternary relation, briefly addressed in 2D in Ref. [13]) or

‘along’, or any other relation involved in scene description

in natural language. Such terms being often context-

dependent, additional difficulties are raised.

Digital aspects and algorithms are also worse to be

further developed [1]. Crisp relationships are often very

sensitive in the digital case. In the fuzzy case, the problem is

much less crucial. Indeed, there is no more strict member-

ship, the fuzziness allows us to deal with some gradual

transition between objects or between object and back-

ground, and relations become then a matter of degree.

Therefore, we can expect to gain in robustness when

assessing the relationships between two objects. In this

respect, the fuzziness, even on digital images, could be

interpreted as a partial recovering of the continuity lost

during the digitization process. As for algorithms, propa-

gation algorithms have already been developed for direc-

tional relative position [82], providing good approximations

in a fast way. It could be interesting from a practical point of

view to develop similar algorithms for fuzzy distances for

instance.

Applications in structural object recognition and scene

interpretation have been already developed based on fuzzy
relationships and this field certainly deserves to be further

investigated. More generally, fuzzy relationships are an

important feature in spatial reasoning under imprecision. In

the proposed review, mathematical morphology appears as a

unifying framework. Moreover, due to its strong algebraic

structure, it leads also to qualitative representations, in the

context of formal logics [87], which can be useful in

qualitative spatial reasoning.
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