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propose a decomposition of the global measure of conflict as a function defined over
the power set of the discernment frame. This decomposition, which associates a part of
the conflict to some hypotheses, allows identifying the origin of conflict, which is hence
considered as “local” to some hypotheses. This is more informative than usual global

gﬁﬁfg ;i;.ctions measures of conflict or disagreement between sources. Having shown the unicity of this
Conflict decomposition, we illustrate its use on two examples. The first one is a toy example where
Conflict decomposition the fact that conflict is mainly brought by one hypothesis allows identifying its origin.
Distribution of conflict over hypotheses The second example is a real application, namely robot localization, where we show that
Vehicle localization focusing the conflict measure on the “favored” hypothesis (the one that would be decided)

helps us to robustify the fusion process.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Multi-sensor systems are used in many applications such as classification, image processing, change detection, object
trajectory localization. Usually the information provided by each sensor is prone to imperfections, such as imprecision and
uncertainty, and fusion procedures aim at making better decisions by combining multi-sensor information. Belief Functions
(BF) are suitable for modeling imprecision and uncertainty, and handle belief on the power set of the frame of discernment
(set of hypotheses).

A disagreement between sources indicates a possibly unreliable result from which may derive a bad decision. Thus, for
managing the disagreement, several authors have developed different combination rules where “Dempster’s conflict” [48]
is transferred to a set of elements. There are two main ways to redistribute Dempster’s conflict: Either globally, using
Dempster’s rule [45] or Yager's rule [52], or based on a conflict estimation local to a considered hypothesis, for instance
using Dubois and Prade’s rule [12], which can be considered as a redistribution rule (although not initially intended as such),
as shown in [21], or using a Proportional Conflict Redistribution rule (e.g. PCR5 [47]). In [25,28], the conflict is estimated
locally to a hypothesis and a source, and relatively to the other hypotheses supported by the other sources. This local
estimation is assumed to be a local indicator of source “reliability”, and then used to automatically discount the source.
Florea et al. [14] proposed a more robust (according to the authors) combination that is a weighted sum of conjunctive and
disjunctive rules, with the weights being functions of Dempster’s conflict.

A few works have proposed to use the conflict in other tasks than the one of combination. For instance, in [37,38],
Dempster’s conflict was used as a precision criterion of superimposition of the images provided by the different sources. The
authors in [35] proposed to use the conflict between a model predicting the evolution of a system state and observations
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to decide whether the model was appropriate or not, and then potentially change the model. Schubert [41,42] proposed
to compute pairwise conflicts between sources, to use the conflict values for clustering the sources, and to combine only
non-conflicting sources (grouped into the same cluster). In the same spirit, Klein and Colot [19] defined a series of measures
of conflict that is function of discounting rates and based singular source mining on it. In [43], a measure involving both
Dempster’s conflict and the aggregated uncertainty [24,16,29,17] was used to evaluate the relevance of different discernment
frames.

Finally, besides these studies considering the conflict as a potential information source, several works focused on the
estimation of the conflict itself. A review can be found in [22], where the author argues that two beliefs in conflict should
present both a high Dempster’s conflict value and a high distance value. Indeed, the dissimilarity between beliefs is often
measured by a distance (see [18] for a review of the different distance measures between beliefs). A typical example is
to compute an Lp-norm distance between mass functions. In [27], Jousselme’s distance was used to evaluate the conflict
introduced by a belief into a set of beliefs. Now, authors generally agree that a distance is not a direct measure of conflict.
Recently, some works have proposed alternative definitions to Dempster’s conflict, e.g. [9,26,43,44,11]. Anyway, Dempster’s
conflict remains a strong indicator, even if its interpretation may not be so straightforward.

In this paper, that extends our preliminary work in [40], we aim at a finer analysis of source disagreement based on
Dempster’s conflict. In particular, we propose a decomposition of Dempster’s conflict, which is related to the different
elements of the frame of discernment and thus helps identifying the potential link between the conflict and particular
hypotheses. It only applies for non-dogmatic belief.

The proposed decomposition can be used to analyze the intra-source conflict (i.e. the conflict inherent to a source when
modeling the information it delivers as belief functions) or the conflict between sources (i.e. the conflict which appears
when merging sources). This decomposition could also be used to design new combination rules. This step is out of the
scope of this paper and we focus on the decomposition and its analysis.

After reminding some notations and basic elements on mass function decompositions and distance measures in Section 2,
the proposed function of conflict is introduced and analyzed in Section 3, while numerical aspects are detailed in Section 4.
It is then illustrated on a vehicle localization problem in Section 5. Conclusions are provided in Section 6.

2. Background

In the following, we denote by £2 the frame of discernment and by 2% the power set of §2. A Basic Belief Assignment
(BBA) on 2, noted m and also called mass function, is a function from 2% into [0, 1] such that Y acze M(A) = 1. The
elements A of 2 with a non-null mass value, i.e. m(A) > 0, are called the focal elements of the BBA. Three specific kinds
of BBAs are:

e the BBAs, called “non-dogmatic”, that have §2 as focal element,

o the BBAs having only two focal elements, one of which being £2, called “Simple Support Functions (SSF)” when referring
to the canonical decomposition (presented further),

o the BBAs, called “consonant”, that have nested focal elements, i.e. VA C 2 |m(A) >0, VBC 2 |m(B) >0, AC B or
B C A.

Plausibility and commonality are denoted by Pl and g, respectively. They are functions on 2%: VA € 2%, Pl(A) =
ZBM#M m(B), q(A) = ZB;A m(B). Note that since the functions m, Pl and q (as the two other belief functions not used
in this work, namely the credibility Bel and the implicability b) are in one to one correspondence, they represent the same
belief.

The dissimilarity between BBAs is often used for computing the disagreement between the corresponding sources. As said
in the Introduction, it is generally estimated from a conflict or distance measure (see e.g. [18,22]). Specifically, “Dempster’s
conflict” is computed, in the case of two BBAs m; and m;, as follows:

Kip= E E m1(A)my(B). (1)
AC BCQ
ARB=9

When several beliefs are available, combining them allows deriving a global belief. Specifically, the orthogonal sum was
defined by Dempster [45] to combine, in a conjunctive way, N BBAs assumed to be independent. It involves a normalization
term that corresponds to the assumption of a closed world' and writes, in the case of two BBAs m; and my, 1 — K12
(Eq. (1)). Alternatively, assuming an open world,> Smets proposed [49] to remove the normalization and to assign the value
K1, to the mass of the empty set. Then, Smets’ combination [49] (sometimes simply called conjunctive rule because of its
authority) writes:

1 Exhaustive discernment frame.
2 Non-exhaustive discernment frame.
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VCCS R, mp20)=Y Y m(AmB). (2)
A2 hac

The dual operator to the combination is the decomposition. It aims at deriving the elementary beliefs underlying a
global belief. In the canonical decomposition initially proposed by Shafer [45], the elementary beliefs were SSFs, and when
a BBA can be represented as an orthogonal sum of SSFs, it is said “separable” (SBBA). Then, Smets proposed a canonical
decomposition of every non-dogmatic BBA, as a unique conjunctive combination of generalized simple support functions
(GSSF) [49]:

m= Q) A¥®, 3)
ACS2

where AW® is a GSSF, ie. a function with only two focal elements A and §2, such that AV (2) = w(A), A¥YA(A) =
1 — w(A), and VB € 29 \ {A, 2}, AV (B) = 0. If w(A) <1 then A¥® is an SSF, and if all the GSSFs of the canonical
decomposition are SSFs, m in Eq. (3) is an SBBA.

By convention 2 is not part of the canonical decomposition, and we set w(£2) =1 in the following. For the other
elements of the decomposition, the weight function w is expressed from the commonalities:

YA C Q, W(A) — l_[ q(B)(7])|B\*\AH~1 . (4)
BDA

The canonical decomposition has been used, for instance, to define a cautious combination rule taking into account the
non-independence between sources: the decomposition helps to recognize similar elementary beliefs that are present in
both BBAs to combine. Then, for the conjunctive combination of N non-dogmatic BBAs that are not “cognitively indepen-

N . ..
dent”, Denoeux’ cautious rule [10] writes: mg = @ Ac_QA/\j:] Wi where /\ usually denotes the minimum operator.
Using the canonical decomposition, Smets’ combination can be reexpressed in the case of N non-dogmatic BBAs that are
“cognitively independent”:

VAC 2, mgA)= O All=wi®, (5)
ACS2

In our case, we will mainly use the canonical decomposition to recover the elementary beliefs.

Finally, the pignistic probability function BetP is widely used at decision level within the Transferable Belief Model
interpretation of belief functions [48]. It is defined from £2 into [0, 1] such that VH € §2, BetP(H) = % D Ac2? Hen %,
where |A| denotes the cardinality of A.

In the following, according to the previous notations, H denotes a singleton hypothesis, and A any subset of §2.

3. Proposed decomposition of conflict

In this study, we aim at developing a more informative measure of the conflict than a single scalar value. In particular,
it seems important to determine the different contributions of the hypotheses to the global conflict between sources. For
instance it could help to detect a modeling problem specific to a given hypothesis (as shown in Section 4.3) or to evaluate
the consensual nature of a hypothesis likely to be decided (as shown in Section 5). This is achieved by a decomposition of
m(¥) that leads to the definition of a function of conflict defined over the power set of the discernment frame.

In this study we assume that m(¥) is given. It could either have appeared after the combination of two (or more)
BBAs using an unnormalized combination rule, or have been present in the initial BBA(s), for instance, when modeling a
reject hypothesis under an open-world assumption. Now, in the considered application and in the toy example cited for the
illustration of the proposed decomposition interpretation, only the first case has been considered since the second one is
very specific. Anyway, all the developments in this section apply whatever the origin of m(%).

3.1. Functions fy and fy

Let m be a non-dogmatic BBA. We denote by C the subset of 2 such that C = {A € 2° | w(A) # 1}, where w is the
weight function of m. Note that £ ¢ C.

Definition 1 (Conflicting subsets I'y,). Let m be a non-dogmatic BBA and the associated C. We define a conflicting subset of
cardinality p as a subset I'y, = {A1,..., Ap} of C, such that ﬂle A;j =1 and A(A;, Aj) € le, i#jlA; CAj.

Definition 2 (Set of conflicting subsets S ). The set Sr is the set of all subsets I7. It is a finite set, we note L its cardinality.

For instance, for £2 = {H1, Ha, H3}, {H1, {H1, H2}, {H2, H3}, {H1, H3}} is not an element of S, while the reduced subsets
{H1,{H2, H3}} and {{H1, H2}, {H2, H3}, {H1, H3}} are.
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Definition 3 (Function fy). Let Sr = {Iy, I € (1,...L}} as in Definition 2. We define a function fy from Sr into R as:

VI eSr, fop =[] (1-w(A) [ w(Ap). (6)

Aiel“wl AeC|
VA €Ty, AjNAL#A|

In Eq. (6), the first part of fy(Iy,), namely ]_[Al_epwl (1—w(Aj)), represents the conflict directly induced by the elements of

Iy, (the term “direct conflict” was introduced in [45] to qualify the conflict between two SSFs). The second part of fg(1y,),
namely I—[AkGCWAjE[‘MP w(Ay), represents a discounting of the previous direct conflict (case of an SBBA).
AjﬂAkqﬁAj

Proposition 1. The function fy introduced in Definition 3 can be expressed as:

A; w(Aj)
vigesr. foy =[] A" @n [T >, A7"o). (7)
Aier, Aj¢rﬂl BE{Aij}‘
aA,-eFMI,A,-gB

Proof. By definition, VA; € Iy,

AP (A) =1 - w(A. 8)
Then, VA; ¢ Iy,
5 W(A)(B) w(A]) if BA; € Iy | Ai C Aj, ©)
if3A; e Iy | A C Aj.
Be{Aj,22}|
HAiEF(AI,A,'gB
Then,
I1 > A e= I1 W(Aj) (10)
Aj¢ly  Be{A;.2}| Aj¢ly
HAiEFmI,Aig_B VA,'EFMI,A,'QAJ‘#A,'
= ]‘[ w(Ay. O (11)

AreC|
VAiely,, AiNALFEA;

Definition 4 (Local conflict function fy). Using the same notations, we define an average function fy, called “local conflict
function”, from 2% into R as:

_ 1
VACR, fp= Y T fedw).

rylAery |
fa(2)=0. (12)
3.2. Proposed decomposition of m(¥)

In this section, we illustrate the interest of the previous definitions of fy and fy, by showing that m(%) = Y ace fo(A).
For this, let us first decompose m(9) over the fy(Iy) for I'y, € Sr.

Proposition 2. Let m be a non-dogmatic BBA, S = {I'y,, 1 € {1...L}} as in Definition 2 and fy as in Definition 3. The mass on the
empty set can be expressed as:

m@= Y fo(Iy). (13)

FMIGSF

Proof. m is the conjunction of the GSSFs of the canonical decomposition, and in particular m(#) writes:

m@= 3 AYB) xx AL B, (14)

BicR,ie{l,....ICl}
Bq ﬂBzﬂ-“ﬂB‘a:Q
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Now, Vie {1...|C|}, A;’V(A") is a GSSF whose mass value is null except for B; € {A;, £2}. Therefore,

ICI
Aj
m@= Y - > [IA o (15)
B1€{A1.2}  Bici€lAic). 2} i=1
NI Bi=o

Let Sp denote a set of |C| elements where each element B; is chosen between A; and §2: Sp = {B; € {A;, 2}, i€ {1,...,|C|}|

lg] B; = #}. The right member of Eq. (15) is a sum over elements Sg. Now, for any set Sp involved in this sum, two

possibilities arise:

o this set does not contain consonant subsets, and then it is an element of Sr;
e this set contains consonant subsets. Then a subset of it is an element of S, with cardinality lower than |C|. Let FWSIB
denote the subset of Sp obtained by removing from Sg the B; of largest cardinalities among the consonant ones. Note

that several Sp can lead to the same FQSIB when using this procedure. Let us consider an element I, of S, and all sets
Sp such that FQSIB = Iy,. Then the contribution to m(#) of all these sets Sp is:

B1€{A1,82} Bicie(Aic). 2} BicSp
{Bi}ie(l.,.\C\)=SB,FwSIB=1—'y;’
Ai w(A})
= J] AR (A)) I S AN By = . 6
Aiely Aj¢ly,  BelAj,2)|
JAjely, AiCB

Reciprocally, for each I'y, € Sr, each way to supplement it by |C| — |I,| elements B € CU 2 such that 3A; € Iy, A; C B
forms a set {B; € {A;, 2}, i€ {1,...,|C|}| m}i‘l B; =@} and thus is an element involved in the sum of Eq. (15).

Finally we get:

mo= 3 ([[4wx< | ¥ a%e)) (a7)

Fy)lesl" AiEFMI AJ¢FV31 BE{AJ‘,.QH
JA;ely,,|A;iCB
i =

From this expression and Eq. (7), Eq. (13) is straightforward. O

For instance, let 2 = {Hq, Hy, H3, H4} and C = {H1, Hy, H4, {H1, H4}}. The set Sp = {Hq, Hy, H4, {H1, H4}} is involved in
the sum of Eq. (15). Then, the element of S associated with Sg is in {{H1, H2}, {H1, H4}, {H2, Ha}, {H2, {H1, H4}}, {H1, H2,
Hy}}. By specifying that this element of Sy is supplemented by only hypotheses B such that 3A; € Iy, | A; € B, there is
only one associated conflicting subset FS‘B, namely {H1, Hz, H4}. Reciprocally, for I'y, = {Hy, H2}, there are two associated
sets Sp, namely {Hq, Hy, 2, {H1, H4}} and {Hq, H3, $2, £2}.

This expression shows that the mass of the empty set is the sum of L “partial conflicts”, introduced by subsets of
elements in direct conflict (elements present in the conflictual subset Iy ), and whose value is discounted by some not
conflicting terms. .

The next proposition is the main result of the paper, namely the interpretation of fs as a decomposition of the mass of
the empty set.

Proposition 3. Using the same notations as above, we have:

m@) =Y fa(A). (18)

Ae2®

Proof. We have:
- 1 Lo
Yo=Y > T f ) =Z|F— > faT).
Ae2@ ac22 by aery, T =1 " Aery,

Now, for a given conflicting subset I, the sum ZAE% fa(Iy) includes || identical terms ( fy(I7,)), since Iy, is a set
(not ordered). Then, Y 4cp0 fa(A) = Y, fo(Iy) =m@). O
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The values taken by the function fy at a point (hypothesis) are the terms of the decomposition. Thus, they may be viewed
as the parts of the conflict “local” to a given hypothesis, hence the proposed name “local conflict function” in opposition
to Dempster’s conflict that is a “global conflict” measure. Let us also recall that the proposed decomposition only applies
for a non-dogmatic BBA. Then, considering a non-dogmatic BBA, the canonical decomposition allows us to decompose it in
elementary beliefs (or “unbeliefs” in the case of a non-SSBA). These elementary beliefs can be in conflict or not, and the
proposed decomposition puts in light the parts of the conflict due to the different subsets of the elements of the canonical
decomposition.

Proposition 4. The decomposition of m(¥) given by Eq. (18) is unique.
Proof. According to Eq. (6), fy(I) only depends on the canonical decomposition of the considered BBA. From this canonical

decomposition, we derive: (i) the set C and thus the set S according to Definition 2, and (ii) the weight function w. Thus
the function fy is unique for a given BBA, and so is the function fy, and the decomposition of m(#). 0O

Corollary 1. For an SBBA, YA € 22, f;(A) € [0, 1].

Proof. Since the BBA is separable, VA € 2%, w(A) € (0, 1]. Therefore, according to Eq. (6), VIy €Sr, fo(Iy) €[0,1], and
according to Eq. (12), VA € 22 fs(A) > 0. Thus, from Eq. (18), m(#) is a sum of positive terms. Besides it is bounded by 1,
therefore VA € 2%, fs(A) €[0,1]. O

Corollary 2. For a normalized consonant BBA, VA € 2%, fz(A) = 0.

Proof. Since the BBA is consonant, C is also consonant (C is a subset of the focal element set). Then, there is no conflicting
subset and Sp = . Thus, VA € 2%, fz(A)=0. O

4. Numerical aspects

4.1. Example of algorithm

Practically, there are four main steps to compute the conflict decomposition of a BBA m:
. compute the canonical decomposition of m and its weight function w;

. compute the set Sr of conflicting subsets I7,;

. compute the values of the function fy according to Eq. (6);
. compute the values of the function fj according to Eq. (12).

B W N~

One difficulty may be the estimation of S when |C| is large. According to Definition 1, the elements Iy, of Sp are such
that A(A;, Aj) ey x Iy, i#j|Ai CAj. Let us define C* =C\ {#} (C* is the restriction of C to non-null elements), and
Co ={9}.

In the following definition, we decompose C* as a partition into consonant subsets C; defined as follows:

Definition 5 (Subsets C;). For a non-dogmatic BBA m and the associated set C, let {Cj, je{1,..., M}} be a set of M subsets
that form a partition of C*, and such that each element of the partition is consonant, i.e. V(A, B) e C2, AC B or B C A.

For instance, let £2 = {Hq,...Hg} and C= {A1,...Ag} with Ay ={Hq}, A, = {H1, H3}, A3 = {H3}, A4 = {H2, H4, Hs},
As = {H1, H3, Hy}, Ag = {H2, Hg}. An example of partition of C into M = 4 subsets is as follows: C; = {A1, Az}, Co =
{A3, A4}, C3 = {As}, C4 = {Ag}. An example of partition of C into M = 3 subsets is as follows: C; = {A1, A2, A5}, C2 =
{As, Ag}, C3 = {A4}.

From Definition 1, two elements of Iy, cannot belong to the same subset Cj: V(A;, Ay) € 1"@21, (AieCj, Ay eCjy, i#i)=>
j#J'. Then |Iy| < M, with M the number of consonant subsets C;. Then, a simple method to derive Sp is provided in
Algorithm 1.

An intermediate variable in Algorithm 1 is the indicator vector V. The correspondence between the different p-tuples
with p € {0, ..., M} and the V indices is as follows (in our case): an M-tuple of indices (ip,...,i1), with Vj e {1,..., M},
ijef0,...,|Cj|}, corresponds to a p-tuple of C elements such that i; is the index of the element selected in C; with the
convention that i; = 0 means that no element is selected in C;. Then, this M-tuple of indices (iy,...,i1) is located in V
at the position Z?"ﬂ ijsjwithsy=1and Vje(2,...,M},sj = ]‘[,{;}(|Ck| +1)=5j_1(ICj—1] 4+ 1). Thus for an element of V
located at position n, the index of the C; element is S”—J (mod|C;| + 1), where % is the entire division.

In Algorithm 3, the first step after initialization is the setting to 0 of the components of V corresponding to the M-tuples
actually containing less than 2 elements of C (only 1 or 0 ij > 0 in the M-tuple of indices (iu, ..., i1)). Then, the second part
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Algorithm 1: Conflicting subsets.

Data: the set C of the canonical decomposition.
Result: the set S of conflicting subsets.
Compute a partition {Cq,...,Cpn} of C, for instance using Algorithm 2;
Compute the indicator vector V of size d = ]_[9/':1 (ICjl 4+ 1) of the M-tuples of C that contain no consonant elements, for instance using Algorithm 3;
Initializations: Sy =@;
forn=1...d do
if the n th element of V is equal to 1 then
Initializations: I'y, =¥; B = £2;
for j=1...M do
i < index of the element of C; belonging to the M-tuple n;
if i > 0 then
A < the element of index i in Cj;
ij, <—Fy1‘ U{A};
B < BNA;
end
end
if B =( then
| Sr <_SFU{FV),]
end

end

end

Algorithm 2: Partition of C into consonant subsets.

Data: the set C of the canonical decomposition.
Result: the elements of a partition of C* into consonant subsets.
Initializations: C' =C*; M =0;
while C’ # ¢ do
M« M+1;
A < an element of C’ of minimal cardinality;
CM < A;
C' < C\A;
while 3BeC'|VAe€Cy,BC AorACB do
Cum < Cm U{B};
C' < C'\B;
end
end

of the algorithm considers any pair of elements in two different consonant subsets, and if there is an inclusion relationship
between them, then, for every M-tuple including this pair of elements, the value of the corresponding V component is set
to 0.

Let us illustrate these algorithms on the previous example, with C = {A4, ..., Ag}. During the iterations of Algorithm 2,
we have successively: M =1, C; ={A1}, C1 ={A1, A2}, C1 ={A1, A2, A5}, M =2, Co ={A3}, C2 ={A3, Ay}, M =3, C3 ={Ag}.
In this example, the elements of C are here scanned according to their binary representation order (where H; is repre-
sented by a bit equal to 1 at the i position from the left). However, more optimized scans could be used in Algorithm 2
“while” loops. In Algorithm 3, V is of size 4 x 3 x 2 = 24. First, the V values corresponding to 1-tuples are set to O.
Then, V(0) = V(1) =V(2)=V@B)=V@4) =V(8) =V(12) =0. Then searching the inclusion relationships between ele-
ments in two different C;, j € {1,2,3}, only one is found, namely {A3} C {Ag}, i.e. between the 15t element of C, and
the 1% element of Cs. Then, V(16) = V(17) = V(18) = V(19) = 0. Then, 13 potential conflicting subsets remain, namely
{H1, H2}, {{H1,Hs}, Ha}, {{H1,Hs, Ha}, Ha}, {H1,{H2, H4, Hs}}, {{H1, H3}, {H2, Ha, Hs}}, {{H1, H3, Ha}, {H2, H4, Hs}},
{H1,{H2, He}}, {{H1, H3}, {H2, He}}, {{H1, H3, Ha}, {H2, He}}, {{H2, H4, Hs}, {H2, He}}, {H1,{H2, Ha, H5}, {H2, He}}, {{H1,
Hs},{H2, Ha, Hs}, {H3, He}}, {{H1, H3, Ha}, {H2, Ha, Hs}, {H3, Hg}}. Considering in addition the criterion of empty intersec-
tion (Algorithm 1), {{H1, H3, Ha}, {H2, H4, H5}} is found not satisfying it, so that finally |Sy| = 12. Note that a brute-force
algorithm, not using the notion of consonant subsets, would have to check Definition 1 for 2/l — 1 —|C], i.e. 57 cases in the
example.

For further results using consonant subsets Cj, one can refer to [39] (Roquel’s PhD thesis), which also gives a formulation
from the functions resulting from the combination of the conjunctive GSSF associated with the elements of a given C;.

Some numerical simulations have been performed to compare the proposed approach (using consonant subsets) to a
brute-force approach that derives Sy by checking the full number of tuples. The computation time improvement depends
on the number of consonant subsets that can be defined from the canonical decomposition of the considered BBA. For tests
performed considering 10000 SBBA random samples, the ratio between the average computation times of the brute force
approach and the proposed one is about 20 for |C| =3|£2|, |§2| € {6, ..., 10}, and can reach 100 for |C| =24, |2| =4.



1136 A. Roquel et al. / International Journal of Approximate Reasoning 55 (2014) 1129-1146

Algorithm 3: Indicator vector of non-consonant M-tuples.

Data: the elements of a partition of C into consonant subsets.
Result: indicator vector V of the M-tuples of C that contain no consonant elements.
Initializations: d < ]_[9/1:1 (ICjl +1); V is a boolean vector of size d initialized with the value 1 for each element; s; =1;
for j=2...M do
| sj<sj1(ICj—1l+1);
end
for j=1...M do
fori=0...|C;| do
| V(sjxi)=0;
end

end

fori=1...M—1do

forall the A € C; do

k < the index of A in C;j;

for j=i+1,M do

forall the B € C; do

[ < the index of B in Cj;

if ACBorBC A then

p < ksi;

while p <d do
forn=p,p+si—1do

if vin) =1 and% (mod |Cj| + 1) =1 then

| V()=0;
end
end
p < p+(Cil+ Dsi;
end
end
end
end
end
end
Table 1
Correlation between m(%) and f; maximum value.
|C| 2 3 4 5 6 7 8 9 10 11 12
R? 1 0.989 0.967 0.936 0.875 0.796 0.697 0.578 0.443 0.332 0.332

4.2. Numerical tests

In this section, we propose numerical tests to investigate the potential correlation between m(f) and some element(s)
of the decomposition.

For this, random BBAs are uniformly drawn as in [7]. For |§2| = 4, for each BBA sample, the number of focal elements
of the BBA is drawn uniformly in the interval [2, 15], as their indices are drawn uniformly in the interval [1,2% —1]. 2 is
always focal in order to ensure that the BBA is non-dogmatic. Then, for each focal element, a mass value is drawn according
to the Gamma distribution giving an unnormalized mass function which is then normalized so that its sum equals 1. Note
that the decomposition applies also when m(#) = 0. In this case, either m is an SBBA and all the terms of fy are null,
or m is not an SBBA and some terms of fy are positive and some are negative. Let § =m(@) — > ,ce fu(A), where fy is
computed using Eq. (12). The mathematical proof shows that this quantity is theoretically equal to 0. However, the proposed
numerical validation is intended to check the absence of numerical problems and we obtained the following statistics on &
values, computed from 11300 BBA samples: mean value = 6.8182 x 10~'!, L; norm = 1.4002 x 10~10 (average of the |5
values), Loo norm = 1.1325 x 10~% (maximum of the |§| values).

In the previous simulations, we considered the general case of random BBAs. Now, in most practical cases, Dempster’s
conflict comes from the conjunctive combination of several BBAs. We now test the correlation between m(#) and fy terms
in the case of an SBBA (that is by definition the conjunctive combination of SSFs). Table 1 shows the correlation (computed
on 10000 samples and versus |C|) between m(#) and the maximum value of the fy terms, because the maximal value of the
correlation is expected for this maximum value of the decomposition terms (since the BBA sample is an SBBA, the terms of
the decomposition are all positive and sum up to m(#)). It clearly appears that if the correlation is high for small numbers
of combined SSFs, when |C| increases the correlation decreases, reflecting the fact that several hypotheses contribute to
m(?).

Secondly, let us observe the distribution of fu(A) versus |Al, by varying [§2|. For this simulation, only the separable case
is considered so that VA, fy(A) > 0 and average values of f3(A) can be compared easily. As previously, we use the uniform
random sampling proposed in [7], but only SBBAs are retained (acceptance-rejection method). Table 2 shows the mean



A. Roquel et al. / International Journal of Approximate Reasoning 55 (2014) 1129-1146 1137

Table 2
Mean value and standard deviation between parentheses of fy(A) versus |A|, for different values of |£2|. Only separable BBAs are considered. Ny is the
number of samples.

|A| 0 1 2 3 4 5
12]=2 184 x 1073 145 x 1073 0.0

Ng = 8397 (263 x 1073) (124 x 107%) (0.0)

12]=3 128 x 1073 387 x 107> 956 x 1076 0.0

N = 3975 (206 x 1073) (178 x 107%) (841 x 107°) (0.0)

|2|=4 695 x 104 974 x 107 219 x 106 644 x 1077 0.0

Ng =930 (162 x 1073) (718 x 1072) (287 x 1072) (163 x 107°) (0.0)

12]=5 315x 1074 881 x 1077 382 x 1077 573 x 1078 133 x 1079 0.0
Ng =558 (122 x 1073) (264 x 1072) (186 x 1072) (320 x 1076) 700 x 10~8 (0.0)

value (and standard deviation) of fs(A) versus |A|, for different values of |$2|. We clearly see that highest “local conflict
function” values fy(A) are achieved for the hypotheses with low cardinality, in particular the singleton hypotheses. We also
note that when |£2| increases, the conflict m(#) is spread over more hypotheses leading to globally smaller values of fj(A).

4.3. Toy example

We now propose a direct interpretation on a toy example illustrating the proposed decomposition. Let us consider a
classification problem with ¢ classes and two sources of observations. The aim of the classification is to estimate the class
of a sample based on observations. Observations occur in a feature space. In the case of supervised classification, we assume
that the link between this feature space and the class space is known. For instance, using probabilistic models, this link can
be expressed through the conditional probability laws of an observation (features) conditionally to each class. Also classically,
the feature space is assumed to be continuous and the observations are corrupted by a Gaussian white noise A(0, o). Here,
we assume that we have two sources providing two observations corrupted by an independent Gaussian noise, and we
also assume that the conditional probability parameters, i.e. mean and standard deviation values, and thus the conditional
probabilities of an observation conditionally to each class, are known.

Using the belief function framework, we consider the frame of discernment 2 = {Hq,..., H¢}, where H;, i € {1,...,c},
corresponds to the hypothesis that the sample belongs to class i. For each observation in the feature space, a BBA is con-
structed, with the class set as discernment frame, to reflect the belief deduced from this observation about the possible
class(es) corresponding to this observation. Then the BBAs derived from the different observations (two in our case) will
be combined so that the decision is taken based on the combined BBA. The BBA allocation is performed according to the
method proposed by Dubois and Prade [12], and based on the assumed equality between pignistic probabilities and con-
ditional probabilities (in our case). In short this allocation is as follows: let us assume that P(Hj1)) > P(Hjp) = --- >
P(Hj()), the BBA has at most c¢ focal elements among {H 1)}, {Hja), Hj2)}, ..., 2 \ {Hj}, and £2, having masses respec-
tively equal to P(Hjx)) — P(Hj@)), 2(P(Hj@)) — P(Hj3))), (¢ — 1)(P(Hjc-1)) — P(Hj))), cP(Hj)). The constructed BBA is
consonant.

Classically, the BBAs derived from the two sources would be combined, and a decision would be taken according to the
combined BBA (e.g. in favor of the hypothesis maximizing the pignistic probability). In our case, we aim at analyzing the
effects of a modeling error, in particular if it is visible on the fj function. The considered error in this toy example is an
overestimation of the assumed standard deviation of one class, namely Hj (the assumed class parameters are used for the
computation of the probabilities of the classes and then BBAs). So, the erroneous BBA will present a bias in favor of Hp. Our
aim is to check if it induces a specific “local conflict function” value fy(H>).

The simulation is performed as follows. For each sample (in the presented results, the number of samples is 5000):

(i) a class i is drawn uniformly in {1, 2,...,c};
(ii) two observations are drawn according to the actual source conditional distributions of class i;
(iii) assuming normal class distributions with parameters (wj,o;), j € {1,...,c}, the two BBAs are built following the

Dubois-Prade mass allocation [12];
(iv) BBAs are combined using the conjunctive rule (since sources are independent) and the proposed decomposition of the
conflict is applied to the resulting BBA.

As previously said, we arbitrarily introduce an error (or imprecision) in the fusion model. Precisely this error deals with
the assumed parameters of the conditional distribution used during step (iii) to construct the BBAs, that may differ from
the actual parameters of the conditional distribution used during step (ii) to randomly draw the observations. In Fig. 1,
2 ={H1, H, H3, Hy}, and the error on the model is related to the assumed standard deviation of class H, (o; =&). Fig. 1
shows that the value of fy(H>) is greater than for the other hypotheses, even if it is high for all singleton hypotheses: firstly
because they may be in conflict with H, and secondly since singleton hypotheses present higher values of “local conflict”
than other hypotheses as was observed in Table 2.
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Fig. 1. fy(A) versus hypothesis A € (¢, H1, Ha, {H1, Ha}, H3, {H1, H3}, {Ha2, H3}, {H1, H2, H3}, Ha, {H1, Ha}, {H2, Ha}, {H1, H2, Ha}, {H3, Ha}, {H1, H3, Ha},
{H2, H3, Ha}, £2}. Toy example: for hypothesis Hj, the assumed value o' (€ [0.5,2]) is greater than its correct value (o = 0.5, class center distance is 1).
The largest f5(A) value is obtained for A = H>, i.e. the hypothesis which is poorly modeled, and which thus induces conflict.

This illustrates that the proposed decomposition helps identifying the potential source of the conflict among hypotheses.
5. Application to a localization problem

In this section, we illustrate the use of the conflict between sources as a diagnosis tool within a real system, namely
a small autonomous robot. We use the proposed function of conflict in the problem of vehicle localization using several
sources. For this application, we will assume that the conflict is a strong indicator of fusion correctness, i.e. when the
conflict is important, the results of the fusion process may be questionable. In particular, we compare the results of the
fusion either not taking into account any indicator of validity of the fusion (i.e. fusion is always assumed valid), or taking
into account one of the two possible indicators of validity of the fusion, namely Dempster’s conflict, and the conflict local
to the favorite hypothesis of the fusion. This latter case uses our decomposition. The basic assumption is that the fusion
remains correct when the conflict (when present) is brought by the other hypotheses than the one that would be chosen,
whereas it is all the more questionable that the conflict is focused on the favorite assumption or on @. In our case we
will use consonant BBAs, so that fy(%) is null, and thus the conflict is actually focused on singletons of £2 or compound
hypotheses.

5.1. Localization problem

Localization is a key problem in making truly autonomous robots (see e.g. [46] or [6] for a review). Indeed, either
considering exploration robots or service/health-care robots to cite only two examples, the robot should generally move
in its environment to accomplish its task. In order to achieve its objective, it should localize itself with respect to its
environment using sensors which provide information about the environment around or about its own movements.

Classically, the robot embeds some odometers which are used to estimate the distance traveled by each wheel in-
dependently. Assuming a rigid structure of the robot, and knowing the diameter of the wheel and the axle spread, the
displacement (longitudinal and rotational components) between two time instants is estimated and the robot localization is
computed by integrating these data. The odometers are mainly reliable over short distances since wheel slippage can bias
the acquired data. Moreover, due to the data integration, the localization errors accumulate over time.

In the last decade, the visual odometry was proposed [33]. It consists in using image data (instead of odometer data)
to evaluate the robot displacement. Generally some key-points (e.g. SURF [3] or SIFT [23] points) are tracked in successive
images to infer both the scene structure (3D) and the camera movement [2]. Thus, unlike odometers, visual odometry uses
the environment surrounding the robot to estimate its localization. Then it is not affected by a wheel slipping, but it is
limited by the image processing performance versus the robot environment (e.g. the key-point detection and matching). The
absolute localization being computed by integration of displacements, error accumulation still occurs.

For exploration applications, the environment is unknown and the robot has to reconstruct the map of the environment
while localizing itself into it. This is known as the SLAM (Simultaneous Localization And Mapping) problem [13,50]. SLAM
algorithms estimate a state vector containing both the robot pose and the landmark locations. The robot pose information
is usually expressed in the global frame while proprioceptive data are given in the robot local frame. Most of the proposed
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methods [31] use both exteroceptive sensors (like laser range-finder or camera) to gather information about the environment
and proprioceptive sensors (like odometers) to localize the robot. Classically, SLAM is done using probabilistic filters (e.g.
Kalman filter [51], particle filter [31]). The data fusion process is composed of two steps. First, it uses proprioceptive sensors
to compute the predicted state and then it corrects this state using exteroceptive sensors. Two directions are investigated
in current works on localization problems: the instrumentation and embeddability of the systems, and the application of
theoretical advances in filtering, such as the extensions of Kalman'’s filter (e.g. [36,4]). Recently, two methods for localization
have been proposed based on interval analysis or on belief function theory [1,32]. The interval analysis is a rather widely
used approach for localization problem (e.g. [15]). In [32], it is shown that it boils down to use categorical belief functions
in the belief function framework. In [1], belief functions are used to define an algorithm to match a map (mainly road
segments) considering also GPS data. In both studies, the conflict is not considered.
In the next section, we specify the data used as input of the fusion in our experiments.

5.2. Data

The Rawseeds project® aims at building benchmarking tools for robotic systems and evaluating the performances of these
systems [5,8]. The project provides the ground truth corresponding to different trajectories followed by a robot, and the
sensor data, either as raw data or processed by some algorithms.

In this study, we propose to combine the outputs of different localization algorithms in order to improve the localization
precision. Three kinds of algorithms have been considered which provide the corresponding sources for the fusion. The
first one (S1) exploits only odometer data. The second one (S;) exploits only images [34]. For both S; and S, data are
provided by the Rawseeds database. Finally, the third algorithm (S3), FastSlam algorithm [30], exploits both odometers and
camera. For the three algorithms the estimated variables are the longitudinal and rotational components of displacement.
These estimates are more or less precise depending on the physical world and the movement of the vehicle. A wheel sliding
may induce an error in the estimates of the algorithms using odometer data; a homogeneous environment or a mismatch
between features may induce an error for the algorithms using camera data.

5.3. Fusion model

In this section, we propose a simple way to model the problem and the data, with the primary objective to illustrate the
interest of the proposed decomposition. Other models could be used as well. At each instant the movement is described by
a couple (s, 8p) (longitudinal and rotational components), whose values are bounded by the motor vehicle features. (&5, d9)
are expressed in the local robot frame. These values are not affected by the movement integration and do not depend on
the robot pose. In this work, the §; and the 8y ranges have been discretized in a finite number of values, so that §s varies
in [0, 0.3 m] with a step equal to 6 x 10~3 m, and & varies in [—0.2, 0.2] with a step equal to 11% rad.

The frame of discernment £2 is the set of discrete pairs of values (35, ), so that, according to the discretization, |£2| =
50 x 60. 6§ = (Bg(t), Bé (t)) denotes the measurement provided by a source i at instant t, and 871 = (8s(H), 8(H))’ dg)notes
the components associated with a hypothesis H. As a first assumption, we assume that, knowing the source estimate §!, the
pignistic probability of a hypothesis H, H € £2, can be calculated from a bidimensional Gaussian law centered around the
observation values:

-1

1
BetP(H) = o) exp{ 252

((8:(H) = 85(6))” + (89 (H) — 8 (r))z)}, (19)
where o is the standard deviation of the assumed Gaussian white noise. In our experiments, ¢ was assumed stationary
over time and equal for the three considered sources. The higher the distance between hypothesis H and source estimates
at t, the lower the probability of H.

Finally, a consonant BBA centered on the hypothesis maximizing Eq. (19) is provided by the mass allocation proposed
in [12]. Indeed, as stated in Corollary 2, for such a BBA the fy terms are null. Thus when analyzing fj after combination,
a non-null value can only come from a conflict between the sources that have been combined. For consonant BBAs, the
number of focal elements is at most |§2|, but here for practical implementation, we restricted to 4 focal elements.

As second main hypothesis about the data model, we assume that the sampling of data (30 Hz) is high relatively to the
acceleration so that Sg(t) and 6; (t) vary slowly over time. This is called “regularity assumption”. This hypothesis allows us to
consider the move estimates at time (t — 1) as an information source for the estimation of the correctness of the estimates
at time t, or even as estimates of the move at t. We will see in the next subsection how the information at time (t — 1) is
used in the fusion process.

Finally, for combination, independence between sources can only be assumed for S; and S, since S; and S3 both use
the odometer data, and that Sy and S3 both use the camera data. Therefore we use Smets’ conjunctive combination for S;
and S», and the cautious combination [10] for the other source pairs.

3 http://www.rawseeds.org/.
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5.4. Exploitation of conflict

In this work, we estimate dynamically the degree of correctness of the sources to improve the fusion robustness. The
global conflict m(9) is decomposed according to Eq. (18). In this application, we focus on one specific element of the
decomposition, namely the fj; value associated with the hypothesis candidate to be chosen by the fusion. If this latter is
conflictual (ie. its fy value is non-null), we assume that one source has provided an erroneous piece of information, and
we search it in order to remove it from the combination. Rather than a majority criterion to decide the correct pieces of
information, we prefer to base the correctness estimation on the regularity assumption, based on the local distance between
measurements at successive instants. It allows us to focus on the information concerning the hypotheses of interest (the
ones selected by the sources). For this we introduce the following local, i.e. given a pair of hypotheses, pseudo-distance
between BBAs:

Dista p(Pl, Ply) = %|(P11 (A) — Ply(A)) + (Pl2(B) — Pl (B))|. (20)
where Plj, is the plausibility function associated with m;, j € {1,2}, and A and B denote two hypotheses of 2%, Eq. (20)
defines a pseudo-metric for any (A, B): it is non-negative and symmetrical by construction, for each PI, Dista g(Pl, Pl) =0,
and it satisfies the triangular inequality: Dists g (Ply, Ply) + Dista g(Plp, Pl3) > Dista g(Ply, Pl3).

The main interest of this local distance is to restrict to a subset of 2% (pairs of elements) because our interest focuses
on some hypotheses (typically those that can be selected when making the decision).

Precisely, if we denote by H; and H g the singleton elements maximizing the plausibility function of respectively m;
and m g , where m; is the consonant BBA associated with source S; described in Section 5.3 and mg is the BBA after
combination of these BBAs, the exploitation of the conflict is composed of five steps:

1. Compute the set C of hypotheses of the canonical decomposition of mg, and the set Sr of conflicting subsets I,
(Definition 1). i
2. Compute the level of conflict introduced by the singleton element chosen by the decision step: fy(Hgp) =

1 .
ZFM"H@ en, mfg(l"@,), with fy defined by Eq. (6).

3. If f_m(H@ ) > 0, then search the sources which do not respect the assumption of regularity: Dl’stHj(t)’Hj(t_])(Plj,t, Plj¢_1)
> Tp, with

1
Distr;(0),Hy(e~1) (Plies PLi.e—1) = S| (PLie (H(©) = Plj.e-1 (H(©)) + (Plje1 (Hj(€ = D) = Plj.e(H; = D)),

where j is the source index, t and t — 1 two successive instants, and Plj, is the plausibility function of source j at
time t. The threshold value Tp has been fixed experimentally to 0.5.
4. Combine the sources which have been found as likely correct using the two conditions, to obtain a BBA fii .

5. Decide H(t) according to the maximum of the pignistic probability associated to 1 g .

Thus, a source S; will be removed from the fusion process if, on the one hand, the combination of all sources leads to
some conflict (measured via fy, Eq. (6)), and on the other hand, S; does not satisfy the regularity assumption (measured via
Disty ;t),1;—1)(Plj ¢, Pljt—1), Eq. (20)). Note that our approach is different from [22] where the author proposed to detect
the conflict via a couple of measures, namely the mass of the empty set and the norm L., of the difference between
pignistic probabilities extended to 22, The two main differences relatively to [22] are: firstly, our measures are derived
from functions defined over 2 and secondly, the first measure (specific point of fy) is used to detect the conflict, and the
second one (DistHj(t),Hj(tq)(Plj,f, Pl; ;1)) is used to identify the source of conflict (according to the regularity assumption).

5.5. Results

Using the Rawseeds data to test our fusion algorithm, we choose a trajectory including several difficulties or situations
that may induce errors for the robot’s sensors, like corridors with doors on their sides, walls with different depths, spaces
of different shapes and dimensions, with tables and chairs. Besides, the soil is very smooth, with occasional small ridges at
junctions between different floor sections.

In this section, we present the results obtained from different fusion algorithms:

e a fusion scheme not taking into account the conflict: BBAs allocation based on Eq. (19); computation of mg (Sec-
tion 5.4), i.e. BBAs conjunctive combination either using Smets rule or cautious rule [10] depending on source indepen-
dence; decision in favor of Hg (Section 5.4), i.e. according to the maximum pignistic probability. It is called “classic
fusion”.

e the proposed fusion method taking into account the conflict based on our conflict decomposition, as described in the
five steps in Section 5.4. It is called “fy based fusion”.
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Fig. 2. Rawseeds trajectories. The integration of the movement estimation by odometer data (Si), visual odometry (S;) and FastSlam (S3) algorithms are
plotted in red, blue and green, respectively. The trajectory in black represents the integration of movement estimated by the proposed fusion method based
on the interpretation of fj values. For comparison, the trajectory resulting of the classical fusion of sources (i.e. not taking into account the conflict between
sources) and the one resulting of a fusion depending on the m(#) global conflict are shown in magenta and cyan, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

e an alternative fusion scheme taking into account the conflict based on m(¥): BBAs allocation and m g computa-
tion; detection of conflict based on m g (%) value; removing of the likely incorrect pieces of information (such that

DistHj(t),Hj(t_U(Plj,t, Plj;_1) > Tp) of the fusion as in the “fg; based fusion” scheme. It is called “m() based fusion”.

Most of the results will be expressed in terms of Root Mean Square Error (RMSE), defined as the root square of the L;
norm, of three kinds of errors. The first one is the error on the basic estimates, namely &s and &y. The second one is the
error on the Cartesian coordinates of the displacement 8y and &y. The third one is the error on the Cartesian coordinates of
the location X and Y. These three representations are complementary since, on the one hand, the aim of localization is to
obtain the best estimate of position in an absolute reference frame, and on the other hand, a “one-time” error may penalize
the whole sequence of estimates in the absolute reference frame [20]. Considering 8y and 8y, the estimated values 8y are
integrated (in contrary to the & ones). It allows evaluating the estimation of the absolute angle 6 that is a key parameter
of displacement and localization.

As a global result and first guess of the performance, Fig. 2 presents a 2D top view of the 3D physical world with
the ground truth trajectory and the different trajectories estimated by each individual source and different kinds of fusion.
Qualitatively, we note that the mono-source estimations present a serious drift (the more imprecise being the odometer
one). Conversely, we observe that the fusion prevents this drift effect. The figure also allows the qualitative comparison of
three kinds of fusion: (i) classical evidential fusion according to the model presented in Section 5.3, (ii)-(iii) fusion only
between likely correct sources when some conflict is detected, with source degree of correctness estimated on the basis
of the regularity assumption as explained in Section 5.4. The conflict between sources can be detected either based on the
proposed function fy, or based on m(#) values. We observe that the conflict computed as described in Section 5.4 allows
us to estimate a movement close to the ground truth even in extreme cases. We also observe that it outperforms the result
of the fusion of the three sources not considering their degrees of correctness.

In order to further analyze the performance of the fusion, we performed some supplementary experiments. For compar-
ison with the three source fusion scheme, we tested the combination of the two mainly complementary sources, namely S;
(odometers) and S, (camera) versus the combination of the three sources (i.e. adding S3, the FastSlam estimate). Quantita-
tive analysis was based on Root Mean Square Error (RMSE). Results are summarized in Table 3.

Let us first analyze the performance for the variables directly estimated, namely (s, 8¢). From Table 3, we note that per-
formances are very high, since the RMSE values are low, considering the precision of the map. Concerning the combination
of two sources, we observe that the obtained results are within the interval of the mono-source performances. Comparing
the different fusion results, for §; estimation, taking into account the conflict (either by “m(#) based fusion” or by “fj based
fusion”) improves the “classic” fusion results. Now, for two sources, the performances of the m(?) based fusion and of the
fy based fusion are almost identical. Indeed we observe that, combining two consonant sources, the conflict, when it exists,
is concentrated on a small number of hypotheses. When adding the third source, an improvement of the “classic” fusion
results can be observed on both s and &y estimations. Finally for (s, 89), the difference of performances between classic
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Table 3
Performance of localization from the 2D fusion model. Performance is measured in terms of (s, 8g), (6x,8y) and (X,Y) RMSE estimations.
RMSE 8s x 1073 89 x 1073 Sy x 1073 8y X Y
1 source Odometers 0.526 0.219 88.1 80.9 383 36.1
Camera 0.647 0.191 46.6 447 16.6 16.5
2 sources Classic fusion 0.588 0.200 219 215 7.67 6.60
m(¥) based fusion 0.539 0.200 19.8 19.5 6.77 6.81
fo based fusion 0.539 0.200 194 183 6.12 5.98
1 source FastSlam 0.573 0.202 333 331 15.3 133
3 sources Classic fusion 0.562 0.190 16.2 18.2 5.16 9.00
m(¥) based fusion 0.549 0.189 16.3 18.0 4.80 10.0
fu based fusion 0.542 0.189 15.8 16.6 4.67 8.30

fusion and conflict based fusion is smaller for 3-source fusion than for 2-source fusion, mainly due to the performance of
classical fusion.

Now the (8, 8y) values correspond to the estimated displacement expressed in the global frame. Unlike (s, 8¢), these
estimates take into account the movement integration. Observing the results, the interest of the fusion is obvious (with a
factor between 2 and 6 between monosource and multisource RMSE values). The variables (x, 8y) are estimated from &
and 6, that is the integral of the 8o values. Thus for (6x,8y) estimation performances, the rotational component estimation
is by far the most sensitive parameter (explaining the very poor performance of the odometers). We note that, as a kind
of fusion between odometer and camera data, the FastSlam algorithm also presents improved results relatively to the two
other sources. We also note that taking into account the conflict also further reduces the RMSE, and finally that three source
fusion provides even better results, especially when the conflict is considered, and when using fj; based local measure of
conflict.

Finally, the performances for (X, Y), i.e. localization, are strongly related to those of (8x, 8y), except for the RMSE of Y
estimation in the three source fusion scheme. This worse result (relatively to the two source one) is due to a shift introduced
(typically the case of a “one-time” error) at about a third of the course which biases all the following estimates of Y.

Let us now analyze the performances versus the location within the trajectory. Fig. 3 shows the RMSE values on s,
89, 6x and &, estimations, respectively, considering either one source or two sources combined according to the different
fusion processes. The plotted curves have been smoothed over 350 successive samples (sliding window). Fig. 3 confirms
that the results obtained by fusion are much better than monosource results. In particular, we note the drift §, and §, due
to accumulated errors in the case of the one-source estimates, whereas, in the case of the two-source estimates (either
“classic” fusion or conflict based fusion), the RMSE remains about constant versus the time or indice sample (no observable
drift). Now, comparing the different fusion schemes, the results of the fusion taking into account the conflict are better than
those provided by the classical fusion. We also observe that generally §; estimation from odometer data is rather precise
whereas §y odometer estimation is rather poor (with a difference in RMSE values about 0.01 m), whereas 8y estimation
from camera data is rather precise whereas §; camera estimation is rather poor (differences are about 0.003 rad). These
differences in the estimation quality are partially due to the physical principle of the sensors themselves, and partially due
to noise effects (and thus not systematic). Then, even if fusion results may be (slightly) worse than odometer ones for §s,
they are much better on 8y, and vice versa for the comparison with the camera results. Since odometers provide the best
estimate for §s (according to the RMSE criterion), and the camera provides the best estimate for &g, one could think that
the best way to combine the sources would be simply to use the odometers for longitudinal component, and the camera
for the rotational one. We also tested this approach, called “ad-hoc” fusion in Fig. 3. The obtained results are very close to
the camera results, mainly because of the predominant effect on the performance of the rotational component. However,
globally the ad-hoc estimation is slightly better than the camera one, and sometimes quite better e.g. on §, around time
sample 5000 =+ 200. Indeed around this time, the camera §; estimation is very poor (conversely to the odometer one), and
the robot moves approximately parallel to the Y-axis (see Fig. 2). Thus, even if the §; odometer estimation is statistically
far better than the camera one, as the 8 camera estimation is statistically far better than the odometer one, the better
combination of these two data is not to simply use odometer for longitudinal component, and the camera for the rotational
one. Indeed, these two estimates should not be considered independently: for the odometers, a rotational component error
corresponds to an error on the relative movement of the wheels, and thus also at least a slight error on the longitudinal
component, and for the camera, a longitudinal component error may correspond to an error in the matching (of image
features), and thus also an error on the rotational component. Moreover, since odometers as well as camera estimate the
two components at once (not independently), the respective errors on the two components can compensate each other (the
“best” estimate is the pair) conversely to what happens when considered independently.

Fig. 4 is similar to Fig. 3 but considering the three sources. We see that, for the estimation of §s, the fusion schemes based
on conflict interpretation achieve almost the same performances as the odometers (red curve), and for the estimation of &g,
in most cases, the conflict based fusion schemes almost achieve the same performances as the camera data (blue curve). We
note that now some differences appear between the m(#) based fusion and the fy based fusion, even if the results remain
similar (indeed, this is the same process for selecting the likely correct sources, described in Section 5.4). For a more detailed
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Fig. 3. RMSE values on (a) &, (b) 8y, (c) 8x, and (d) 8y estimations by individual sources or by two-source fusion processes, using classical fusion or taking
into account the conflict either via m(%) or via fy.

understanding, Table 4 shows the percentages of each choice in terms of selected sources. Let us consider the four fusion
methods with a variable set of sources (depending on the detected conflict and the criterion of regularity), namely m(%)
based fusion or fj based fusion, either for 2 or 3 sources. For each one, Table 4 gives the percentage of selected sources
among S; (Odometers), Sy (Camera) and (Sq, Sp) for the two-source fusion methods, and among Si, S», S3 (FastSlam),
(51, S2), (51, S3), (S2,S3) and (S1, S, S3) for the three-source fusion methods. For two-source fusion schemes, as already
said, the two criteria for detecting a conflict (either based on m(#) or fy) lead to very similar results, and we note that in
more than 92% of cases both sources are taken into account. For the three-source fusion, the two criteria are not correlated
(correlation coefficient equal to 0.528), and lead to different choices, in particular according to fj the combination of the
three sources should be less often chosen (89% against 98% of cases). Now a high value for the percentage of use of the
whole set of sources, in conflict based fusion schemes, means that all information pieces provided by the different sources
have been estimated as correct, either because they are effectively, or because the system is not able to detect that the
fusion may be incorrect and to identify the wrong information piece.

In Figs. 3 and 4, several subparts of the trajectories have been identified (see Fig. 2): [A, B] is a turn (at approximately
+T”: first % to the right and then +), [C, D] contains two successive loops (each one with four close turns at J—'Z—”), [E, F]
is a straight line with a single turn at % [G, H] contains a loop followed by successive turns at iT” From Figs. 3 and 4,
we observe that most of the difficulties to estimate 8y occur in the case of successive close turns. For §; it is more difficult
to identify the causes of errors, but we assume some wheel slippage.

As a conclusion of the whole study, we can say that in some cases, the knowledge of a more precise information than
the global conflict can improve the results and the proposed method allows to identify this more precise information.

6. Conclusion

In this paper we introduced a “local conflict function” to compute the disagreement between sources. It is based on the
decomposition of the mass of the empty set over subsets expressing the conflict. A strong point is the uniqueness of this
decomposition. It relies on the interpretation of the GSSFs of the canonical decomposition as beliefs that might conflict. Thus,
basically the proposed conflict decomposition applies for any given BBA and the analysis of its “internal” conflict. Practically,
and because the notion of internal conflict remains ill-defined, we propose to apply the conflict decomposition to the result
of the combination of “zero internal conflict” BBAs, namely consonant BBAs. In such a case, the proposed decomposition
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Table 4
Percentage of use of a given subset of sources, in conflict based fusion schemes.
2 sources 3 sources

Fusion based on m(?) fa m(¥) o
Odometers 5.6% 6.5% 0.05% 1.6%
Camera 0.9% 1.4% 0.03% 0.9%
FastSlam 0.02% 0.7%
Odom. and Camera 93.5% 92.1% 0.40% 2.7%
Odom. and FastSlam 1.10% 4.4%
Camera and FastSlam 0.00% 0.5%
3 sources 98.40% 89.2%

provides a tool to analyze a posteriori if there is some conflicting piece of information that could have corrupted the fusion
result.

Theoretical and experimental examples have shown that a global measure such as Dempster’s conflict or a dissimilarity
measure does not always allow a fine analysis of source reliability and origin of the conflict, while the proposed local
conflict function does.

Further analysis of the properties of the local conflict function, more experiments on other applications, and potential
exploitation for model revision or conflict mass redistribution are planned for our future work. In particular, since, when
combining two non-dogmatic BBAs, their elements of the canonical decomposition are mixed up, there is no way nowadays
to distinguish the origin of the conflict between the conflict due to their (conjunctive) combination or the conflict already
present in the individual BBAs. Now, the origin of the conflict could be simply preserved, if we label the elements of the
canonical decomposition in terms of “original” BBA, and if we analyze the labels of the conflicting subsets. Future work
could also address the complexity problems related to large discernment frames. A hint could be to develop stochastic
approaches, such as Monte-Carlo methods, to approximate the computations.
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