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A Primal Sketch of the Cortex Mean Curvature:
A Morphogenesis Based Approach to Study

the Variability of the Folding Patterns
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Abstract—In this paper, we propose a new representation of the
cortical surface that may be used to study the cortex folding process
and to recover some putative stable anatomical landmarks called
sulcal rootsusually buried in the depth of adult brains. This repre-
sentation is a primal sketch derived from a scale space computed
for the mean curvature of the cortical surface. This scale-space
stems from a diffusion equation geodesic to the cortical surface.
The primal sketch is made up of objects defined from mean cur-
vature minima and saddle points. The resulting sketch aims first
at highlighting significant elementary cortical folds, second at rep-
resenting the fold merging process during brain growth. The rele-
vance of the framework is illustrated by the study of central sulcus
sulcal roots from antenatal to adult age. Some results are proposed
for ten different brains. Some preliminary results are also provided
for superior temporal sulcus.

Index Terms—Morphometry, spatial normalization, sulcogen-
esis, variability.

I. INTRODUCTION

T HE ADVENT of methods dedicated to the automatic
analysis of large databases of magnetic resonance images

(MRIs) images of brain anatomy has raised a large interest in
the neuroscience community [1]–[12]. These tools, indeed,
provide new ways of addressing issues related to the compar-
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ison of brain populations. They allow the study of the influence
of various parameters (sex, dominant hemisphere, cognitive
features, genetic features, pathology, etc.) on the anatomical
substratum[13]–[17]. Longitudinal studies of brain matura-
tion or aging process have also received increasing attention
[18]–[20]. The complexity and the interindividual variability
of the cortical folding patterns, however, is still a challenging
issue for these tools. Indeed, nobody really knows how to
match the cortical folds across brains and at which extent such
a matching is relevant from a neuroscience point of view.

A. Spatial Normalization

Most of the brain anatomy analysis methods rely on the
concept of spatial normalization, which consists in warping all
the brains toward a template endowed with a three-dimensional
(3-D) (volumetrical) or a two-dimensional (2-D) (spherical) co-
ordinate system. This referential then underlies further statistical
studies. This coordinate-based spatial normalization paradigm
has made a tremendous impact on morphometry strategies
because of its versatility. A number of different normalization
algorithms, however, are used throughout the world, each one
potentially leading to different results. For instance, the widely
distributed SPM software (http://www.fil.ion.ucl.ac.uk/spm/
[4], [7]) allows the user to choose the template or the number
of basis functions used to model the warping. This observation
means that what is called spatial normalization is far from being
clear, which is explained by the fact that nobody really knows
what may be the gold standard in terms of brain warping.
Furthermore, nobody knows today to which extent matching
two different brains with a continuous deformation makes
sense from an anatomical point of view.

With regards to the problems induced by the variability of
the cortical folding patterns, recent hypotheses claim that some
answers could stem from a better understanding of the brain
growth processes [21], [22]. This paper proposes a new repre-
sentation of the cortical surface that aims at highlighting some
of the fold merging events that occur during the cortical surface
folding process.

B. Gyrogenesis and Sulcal Variability

Cortical folding, the gross anatomical landmarks of the cor-
tical surface, exhibit various forms in different adult brains [23],
which prevents from using them as a straightforward and accu-
rate referential. The origin and meaning of this variability are
still largely unclear and discussed [22], [24]. Nevertheless, a
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Fig. 1. Top: A map of the first fetal cortical folds (sulcal roots) of the temporal
lobe [25]. The folds are numerated according to their date of appearance during
the fetal sulcogenesis. Different merging events between these sulcal roots can
lead to very different folding patterns at adult age. Bottom left: The superior
temporal sulcus is supposed to stem from the merge of four different sulcal
roots. Bottom right: The usual merging events leading to the superior temporal
sulcus have not occurred.

bundle of converging arguments, stemming from ontogenesis,
phylogenesis, and architectonic considerations, have led to hy-
pothesize that a simple and stable organization of the folding,
related to the fetal stage, may underlie the apparently variable
and intricate sulcal patterns of adult cortices [21], [25]. Indeed,
the first cortical folds that appear on the fetus cortex, called
sulcal roots, seem to be especiallystable(in number, position,
and orientation) across individuals. During the following gyral
expansion, however, these sulcal roots become buried into the
depth of the cortex after having merged with each other to build
larger folds. Becausevariable merging eventscan occur, dif-
ferent sulcal patterns can be observed at adult age (see Fig. 1).
The more usual patterns have led to the standard sulcus nomen-
clature [23], but some brains are very difficult to read according
to this nomenclature, either because the main sulci are split into
pieces or worst because the sulcal root merge events have cre-
ated unusual sulci.

One of the simplest examples of sulcus, which will be used to
illustrate the method described in this paper, is the central sulcus
(seeFig.2).This largesulcus isavery interesting landmarkon the
cortical surface because it is the limit between motor and somes-
thesic areas. Hence, the study of its shape has been the subject of
numerous studies [17], [26]–[29]. The central sulcus is supposed
to be made up of two sulcal roots that merge in almost all cases. In
very rare cases, however, this merge does not occur and the cen-
tral sulcus is split in the middle by a gyrus [30], [31]. Neverthe-
less, in most of the noninterrupted cases, this gyrus is still visible
on the walls of the sulcus [32]–[34]. This gyrus initially sepa-
rating the two sulcal roots, indeed, has just been buried into the
depth of the cortex. Hence, a stable simple fetal pattern seems

Fig. 2. Evolution of the central sulcus shape during brain growth. Top:
Antenatal images allow the reconstruction of the fetus cortex surface on
which shallow dimples corresponding to negative mean curvature areas are
highlighted in dark. At that stage, the central sulcus is made up of two sulcal
roots. Middle left: 18 months after birth, the gyrus separating the two sulcal
roots is still visible on white matter surface. Middle right: At adult stage, only
slight deformations of the central sulcus walls give clues on the presence of a
buried gyrus. Bottom: In some rare brains described in literature, the two sulcal
roots of the central sulcus have not merged [30], [31].

to make the link between all the possible configurations. This
paper aims at developing a method inferring this primal pat-
tern from local information about the curvature of sulcal walls
and fundi, which gives clues about the localization of the sulcal
roots. Surface curvature, indeed, embeds more information than
the geodesic depth that has been previously proposed to segment
sulci into smaller units [35], [36].

In the following, we propose a new representation of the cor-
tical surface that may be used to study the cortex folding process
and to recover putative stable anatomical landmarks, the sulcal
roots, usually buried in the depth of adult brains. This represen-
tation is a primal sketch [37], [38] derived from a scale space
[39], [40] computed for the mean curvature of the cortical sur-
face. This scale-space stems from a diffusion process geodesic
to the cortical surface. The primal sketch is made up of objects
defined from mean curvature minima and saddle points, like in
previous approaches [41], [42]. The resulting sketch aims first
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at highlighting significant elementary folds, second at repre-
senting the fold merging process during brain growth.

The long term aim of the method consists in recovering au-
tomatically a map of the sulcal roots from any adult brain. This
map would provide an appealing set of landmarks to match dif-
ferent adult folding patterns. The sulcal roots could then be used
to add some reliable constraints into standard warping algo-
rithms [43]–[46]. Such a map could also be used to study brain
development from antenatal MR images. Statistics on sulcal
root chronology of appearance may indeed become a precious
tool for early detection of development problems. Some inter-
esting cognitive or clinical information could also be embedded
into the variable merging events occurring between the sulcal
roots. Finally, since the sulcal roots are defined as indivisible
cortical folds, they could be used to overcome the problem in-
duced by sulcus interruption in algorithmic approaches relying
on one-dimensional (1-D) lines [47] or 2-D meshes [48], [49].

II. FOLDING PROCESS ANDCURVATURE

The first stage of the method consists in extracting a smooth
mesh representing the cortical surface of each hemisphere from
a T1-weighted MR image. This mesh is endowed with the actual
spherical topology of this surface, which allows the implemen-
tation of geodesic diffusion and inflation operations.

A. Spherical Triangulation of Cortical Hemispheres

A first sequence of treatments provides a binary mask
of each hemisphere cortex with spherical homotopy. This
sequence, which includes bias correction [50], brain mask
segmentation [51], hemisphere mask segmentation [52], and
detection of the gray/white interface [53], is freely available
on “http://anatomist.info.” A standard facet tracking algorithm
is used to compute a first spherical mesh made up of facets
from the cortex mask [54]. Then, the center of each facet
is connected to the center of the neighboring facets in order
to yield a spherical mesh of triangles. This algorithm, which
preserves the initial spherical topology, relies on a look-up table
of configurations like in the standard marching cube algorithm.
Finally, a decimation including smoothing is performed to
discard stair artifacts related to the underlying discretization.
The decimation algorithm is inspired by the algorithm used in
the visualization toolkit (VTK) package [55]. The embedded
smoothing operation iteratively moves the nodes toward their
neighborhood gravity center, which may be related to some
usual surface evolution processes [58].

This mesh construction includes some smoothing operations
that may remove some interesting anatomical information. Nev-
ertheless, this smoothing process is required to get initial ac-
ceptable surface representations and reliable mean curvature
estimations. In the future, surface evolution approaches could
provide alternative scale-space computation that might be less
restrictive.

B. Mean Curvature Estimation

Different approaches can be used to describe and study fine
details of the cortical surface folding patterns. Depth maxima
have been used to detect a concept similar to sulcal roots in

Fig. 3. Approximation of the mean curvature from an irregular mesh [60].
� anda denote, respectively, the triangle angles and areas;� correspond to
the dihedral angles between the normalsn ; the edge lengths are notedl .

[35]. In this paper, mean curvature () is proposed as a richer
descriptor (than the depth) of the various features that can be
observed along sulcus bottoms and walls, which is illustrated
in Fig. 8: fold bottoms appear as local minima of, while
gyrus crowns appear as local maxima. Hence, buried gyri sep-
arating twosulcal roots, appear as areas of positive curvature
along the sulcus walls. Other curvature related features, such
as Koenderink’s curvature metric C (the L2 norm of the prin-
cipal curvatures, or the logarithm thereof) or the maximum prin-
cipal curvature, may be interesting for our purpose and should
be investigated in the future. It should be noted that an isophote
mean curvature related measure (Lvv) has also been proposed
to distinguish sulci from gyri [48]. While this approach could
be used to get a mean curvature estimation related to our cor-
tical surface representation (which may be considered as one
given isophote), its main interest is in the definition of gyrus
and sulcus skeletons as surfaces of singularities [74].

In this paper, mean curvature is directly estimated from the
mesh thanks to its relative smoothness. We used an approxima-
tion proposed in [60] and [61] that takes into account some local
properties of the mesh, as triangle anglesand areas , di-
hedral angles between normals and edge lengths (see
Fig. 3). This method may be considered as less robust than the
usual quadratic patch-based approaches, but was chosen in this
paper for its lower computational burden. It should be noted that
it is too soon to claim that one kind of curvature-based map is
more adapted to our purpose than another one.

C. Fetus and Baby Brains

The previous chain of processing is used when the brain
has reached a high level of myelinization of axons, namely for
more than two years old brains. At this stage, indeed, standard
T1-weighted images based on inversion recovery sequences
give a good contrast between gray and white matter, leading to
an accurate definition of the cortical inner surface. Since the
most interesting part of the folding process is during antenatal
stage, however, we have initiated a research program aiming
at performing longitudinal studies from antenatal MR images
obtained from clinical studies.

In the case of antenatal and small baby brains, however,
the axon myelinization is still in progress, which means that
T1-weighted images show more or less contrast between gray
and white matters according to the brain areas. Therefore, we
have adapted the previous chain of processing to T2-weighted
images, which provide a better contrast (see Fig. 2) [62].
Unfortunately, T2-weighted images usually have a larger
slice thickness, especially with antenatal imaging, where
acquisitions have to be very fast because of the fetus frequent
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motions and for his mother comfort. Since the fetus brains are
very small, this is leading to partial volume problems in the
definition of the cortical inner surface. Hence, we have chosen
to study the cortex outer surface, which is located between the
cerebro spinal fluid and the brain tissues. It should be noted,
however, that the structural study of the folding process can be
done from the cortex outer surface as from the inner surface, as
far as the surface representation is reliable.

The current segmentation toolbox is semiautomatic and is
still far to yield perfect results. Anyway, designing a perfect sur-
face detection method is a challenge because of the frequent ar-
tifacts induced by fetus motions and the various contrast modi-
fications during the myelinization. Nevertheless, for a few fetus
brains, the detected surfaces are sufficiently clean to visualize
small dimples bound to become cortical folds as connected com-
ponents of negative curvature (see Fig. 2). These images allow
us to question the first sulcal root maps, which had been in-
ferred from various descriptions of the literature (see Fig. 1)
[25]. Unfortunately, the various weaknesses of the current ac-
quisition process lead to an awful percentage of success: one
acquisition over 100 can provide a meaningful cortical surface
representation. Hence, we are currently working on faster acqui-
sition schemes using new MR sequences [56] and multicoil ap-
proaches [57], because the main problem to be solved is motion
between slices. In the future, longitudinal acquisitions at several
time steps could allow to follow the folding process subject by
subject, provided that such studies are ethically acceptable.

III. SCALE SPACE OF THECURVATURE MAP

The curvature map of the cortical surface contains much ge-
ometrical information that may be related to the anatomical ele-
ments that have to be detected (sulcal roots, buried gyri). These
elements, however, correspond to different levels of scale (see
Fig. 9). Moreover, a scale-based point of view is required to dis-
tinguish anatomical elements from noise features bound to ap-
pear in curvature approximations, due to segmentation/triangu-
lation artifacts, or biased estimations of the discrete curvature
(see Fig. 8). The scale-space paradigm has been developed to
deal with such problems where all the scales may be of interest.

A. Geodesic Diffusion of the Curvature Map

Two alternative approaches can be used to create a family of
curvature maps evolving toward smoothness, either a diffusion
process geodesic to the cortical surface [63], [64], or a geometric
evolution of the surface itself [58]. Surface evolution according
to a function of curvature has been widely used in image anal-
ysis to describe 3-D shapes. The standard implementation of this
kind of evolution using the level set framework, however, is not
adapted to our goal. This framework, indeed, allows topological
modifications of the tracked isosurface and provides no constant
parameterization that may be used to simply track objects across
scales. A mesh-based implementation, in return, may be used for
the evolution process, but would not necessarily be providing
the causality property required to deal with the scale space [39],
[40]. At each iteration, indeed, some curvature estimation errors
would be made. It should be noted, however, that such an imple-

mentation is used to inflate the cortical surface for visualization
purpose [59].

In the following, the scale space of the curvature map is
computed from the heat equation [40] geodesically to the
cortical surface. This is an arbitrary choice made to experiment
with the anatomical structural ideas mentioned above. A few
experiments using inflated versions of the initial surface to
compute the geodesic diffusion have shown few consequences
on the sulcal structures of interest in the scale space. Some
more studies have to be done, however, to get a better idea
of the influence of the intrinsic curvature of the cortex on the
diffusion process [65]. In the future, the behavior of alternative
anisotropic diffusion schemes [66] could also be considered.
For instance, further work could consist in looking for the
diffusion scheme maximizing the similarity across subjects of
the structural representations inferred from the individual scale
spaces.

The heat equation, which corresponds to a parabolic partial
differential equation (PDE), lends itself with relative ease to
being adapted for the specific case of an irregular 2-D lattice
embedded in a 3-D space [63], [64].

B. Numerical Implementation

The numerical implementation of the heat equation is carried
out as an iterative process of the form

(1)

for each node and each temporal iteration step, where
is the Laplacian estimate at the node of the field of values
(i.e., the map of the curvature).

The implementation of PDEs on irregular lattices can lead
to complex numerical problems; thecausalityproperty usually
required by the scale-space framework may be lost because of
discrete phenomena. This point is beyong the scope of this paper
and would require further study.

1) Spatial Parameterization:The fact that the cortical lat-
tice is embedded into a volume raises a question concerning the
proper axis system upon which to base the estimation of the
local partial derivatives. A conflict exists between the need to
employ three spatial coordinates in the Euclidean space to ob-
tain an ambiguity-free description of the position of each node,
and the wish to perform a strictly surface-based smoothing. The
definition of a coordinate system intrinsic to the surface would
allow for a strictly 2-D-based smoothing. This implies a parame-
terization, i.e., the definition of a mapping functionsuch that

, and being the new coordinates that
allow to refer to every point in the surface without ambiguity.
The diffusion equation is then solved alongand , in a strictly
2-D fashion.

A possible parameterization would consist in the application
of a flattening procedure to the cortical lattice representation
[59]. This way, the flattened cortex would be contained in a
plane, and the parameterized coordinates would corre-
spond simply to the coordinates of the plane in question.
However, cortical flattening leads to a significant amount of
metric distortion (10%–20% in average, locally attaining much
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higher values [6], [59]) and requires the introduction of cuts be-
cause of the cortex spherical topology. Using the mapping to a
sphere would be an alternative solution [8], but spherical coor-
dinates include two poles leading to some other difficulties.

2) Local Planar Parameterization:In view of this, the
adopted parameterization was a simplelocal transformation
that maps each surface element (a node and its first neighbors)
into a plane, while keeping unchanged both the edge distances
and the angular proportions between the edges. This “neigh-
borhood parameterization” [69], [70] amounts to locally flatten
the surface element, and avoids the severe areal distortion that
would result from an explicitglobal flattening.

An individual mapping function is, thus, defined for each
node , independently of the surrounding surface elements. An
arbitrarily oriented orthogonal referential is defined for each
surface element, centered at its central node, and all the required
estimations, notably local Laplacian, are based on this new co-
ordinate system. This local-based approach is made possible
since, for each iteration step of the numerical solution of the
diffusion equation, the estimations involve only the differences
between the values associated with each node and its nearest
neighbors.

3) Estimation of the Laplacian Operator:The adopted
(finite-difference) approach [71], [72] assumes that the field,
implicitly described by the function , is now sampled
with an irregular planar lattice composed of interconnected
nodes. A Taylor series expansion around a given point (, )
has the form

(2)

where , , , and
denote the partial derivative of at point

, , , and .
Writing (2) for a surface element consisting of a cen-
tral lattice node, located at , and its neighbors

leads to

where

...

...

and the five derivatives at (, ) are

In this fashion, estimates of the 2-D Laplacian
are obtained at each node of the lat-

Fig. 4. Definition of GLBs from local minima and saddle points (2-D case).

tice. This approach amounts to solving, for each node, a linear
system involving the relative positions of the node and its neigh-
bors and the corresponding field value differences. It is still a
finite-differences method, in the sense that the partial derivatives
are estimated by differences between field values in neighboring
points, but its range of application is extended to any arbitrarily
irregular grid. The resolution of the system, for each node, is
done in a least-squares fashion

(3)

This system of equations is solvedoncefor each nodeat the
beginning of the diffusion process.

Practically, the estimation of the Laplacian operator at each
mesh node entails the multiplication of the pseudoinverse esti-
mation ( ) of the matrix by the vector containing the differ-
ential data ( ), with denoting
the number of neighbors [71]

(4)

with , where denotes the element on therd
line and th column of the pseudoinverse matrix.

IV. PRIMAL SKETCH OF THECURVATURE MAP

A primal sketch is constructed from the curvature map using
the algorithm proposed by Lindeberg in [42]. This primal sketch
is expected to exhaustively describe the structure of the scale
space of the curvature map and, therefore, to pinpoint its relevant
embedded objects. These objects are valleys of the curvature
landscape existing during a range of scales. In the following, we
present briefly the main steps of the primal sketch construction.

A. Gray-Level Blobs (GLBs)

At each level of scale (i.e., diffusion time), some 2-D objects
calledgray-level blobs(GLBs) are extracted from the smoothed
curvature map. Each GLB is a basin, which may represent a
cortical fold at this level of scale. One GLB is defined for each
local minimum. The GLBs spatial extent (a set of lattice nodes)
is defined from a water rise like algorithm. The water pouring
from each minimum fills a basin, which altitude is defined by
the lowest surrounding saddle point (see Fig. 4). In practice,
each minimum is given a different label that marks a growing
area. The growing is performed altitude by altitude, following
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(a) (b) (c) (d) (e)

Fig. 5. The basic matching relations between GLBs through the scales. (a) Plain link. (b) Annihilation. (c) Merge. (d) Creation. (e) Split. The GLBs are connected
in a SSB withplain links.

Fig. 6. Definition of the SSBs from the GLBs. GLBs belonging to the same
chain can be seen as different instances of a same SSB. The organization of
the primal sketch in the space and through the scale yields an explicit structural
multiscale description of the sulcal topography (from Coulonet al. [67]).

the water rise idea. An area begins to grow when it is reached
by the water. When two growing areas with different labels get
in touch, their growing is stopped. The surrounding areas, how-
ever, are marked by a background label and the background fol-
lows the water rise. When a growing area gets in touch with the
background area, its growing is stopped too. When the highest
altitude has been reached, the lattice is made up of GLB supports
and background area. Inversing the rise of water could allow the
definition of some GLBs for each local maximum, which could
also be of interest to study the gyral patterns.

B. Scale-Space Blobs (SSBs)

Each GLB is defined by two extremal points, a local min-
imum and a saddle point, whose behaviors in the scale-space
are well known from a theoretical point of view. The GLBs ap-
pear or disappear according to four possible events calledbifur-
cations: 1) creation (a GLB appears); 2)annihilation (a GLB
disappears); 3)merge(two GLBs merge into one); and 4)split
(one GLB splits into two GLBs) (see Fig. 5). Between two of
these events, it is possible, with a spatial overlap criterion, to
track a GLB from one scale to a slightly coarser or finer one.
The chains of GLBs linking two bifurcations (see Fig. 6) de-
fine multiscale objects calledscale-space blobs(SSBs), which

(a) (b) (c)

Fig. 7. Iterative construction of the scale space. Example of cases requiring an
adaptive sampling.

are expected to correspond to some anatomical structures em-
bedded in the curvature map.

C. Adaptive Sampling of the Scale Space

Due to the discrete sampling of the scale parameter, situ-
ations different from the five described in Fig. 5 may occur
(see Fig. 7). In this case, an adaptive sampling provides an
intermediate scale level at which this problematic situation can
be overcome. Events in the linear scale space have been shown
to arise logarithmically: the computed intermediate scale
between and verifies, then: , i.e.,

. A limit in the number of successive refinements
must be fixed, and it may happen that this number is not
sufficient to solve a particular problematic situation. However,
reaching the limit in the number of successive refinements
is not of great importance since the missed SSBs have an
extremely short “lifetime” and can then be considered as not
significant [42].

V. RESULTS AND DISCUSSION

A. Central Sulcus Primal Sketch

Figs. 9 and 10 provide a glimpse on the primal sketch fo-
cused on the central sulcus of an adult brain. The structure of
this subsketch is consistent with our initial aims. First, the three
highest SSBs are linked by an event which seems to correspond
to the merge of the central sulcus sulcal roots described by neu-
roanatomists [21]. Second, the spatial localization of the two
sulcal roots related blobs are separated by a buried gyrus, re-
vealed by a slight deformation of the central sulcus wall, as
described by the model. Moreover, the two sulcal roots have a
longer life time throughout scales than noise related blobs.

A fine analysis of the lowest part of the sketch (the superior
sulcal root), however, shows that some instabilities may stem
from spurioussplit events induced by the elongated shape of
the sulcus related blobs [41]. These splits, however, are not nec-
essarily spurious and may be related to what we call “the castle
wall effect.” Let us imagine a landscape with a castle wall shape,
namely a wall with two thick towers as extremities. If the alti-
tude of the wall is higher than the tower altitudes at the begin-
ning of the smoothing process (a weird castle indeed), the whole
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Fig. 8. Mean curvature of the cortex inner surface (adult brain), mapped
on itself (left) and on an inflated version [59] (right). Red (negative) areas
correspond to sulci, while blue (positive) areas correspond to gyri.

Fig. 9. Some isophotes of cortical surface mean curvature at different scales,
mapped on itself (top) and on an inflated version (bottom). Central sulcus
includes two curvature minima at middle scale, and finally only one minimum
at highest scale. The middle scale minima will correspond to two blobs in
the final primal sketch. The saddle point which separates these two blobs is
located at the level of the buried gyrus related clues. Hence, these blobs may
correspond to central sulcus sulcal roots.

Fig. 10. Subsketch of the primal sketch focused on the central sulcus area.
Each GLB is represented by its contour. The contour is moved toward the outside
brain by an homothetic factor related to the logarithm of the scale. Each SSB has
its own color. Red points correspond to the curvature minima from which the
GLB growth begins. Purple points between two blobs and green points between
one blob and the background, correspond to points stopping blob growth. The
position and the organization of the SSBs located in the central sulcus zone
match with the sulcal root-based model of this sulcus.

edifice is represented by only one blob. Because of their thick-
ness, however, the tower altitudes decrease at a lower rate than
the wall altitude during smoothing. Hence, after a while, the ini-
tial blob is split into two tower related blobs. In should be noted
that this kind of events respects the causality property, which
prevents only the creation of new level sets. When such events,
however, occur because of noise induced by some weaknesses
of the numerical scheme relative to the irregularity of the mesh,
the primal sketch may need some postprocessing. An interesting
alternative, based on a finite-element method (FEM), avoiding
local planar parameterization and inversion of ill conditioned

Fig. 11. Top: Two different curvature-based maps: left, the mean curvature
estimation used throughout the paper; right: the signed distance to the barycenter
of the neighbors in the surface mesh. Middle: The GLBs at one level of scale
located before the merge of the central sulcus roots. Bottom: The structure of
the upper parts of the central sulcus primal sketches are isomorphic, while the
bifurcations occur at slightly different times.

Fig. 12. Left: The part of the primal sketch corresponding to the left superior
temporal sulcus for three different brains. The putative four sulcal roots of
our model have been labeled in these graphs (see Fig. 1). The structure of the
subsketches is slightly different across individuals, which may reflect some
differences during the folding process. It should be noted that the subsketches
are not necessarily connected trees, and that the superior temporal sulcus is
not necessarily represented by a SSB. Right: The cortical surface of the three
corresponding brains. The positive mean curvature has been mapped with a red
color map in order to highlight putative gyri buried in the sulcus walls. The
localizations of the curvature minima corresponding to the putative sulcal roots
have been superimposed on the 3-D rendering (red and green rectangles).

matrices, can be found in [64] and is under investigation. It may
overcome some of these problems.
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Fig. 13. Variability of the central sulcus folding pattern among eight adult (top) and two child brains (bottom). For each subject, a mesh of the cortexinner surface,
mapped with its mean curvature, highlights the deep buried sulcal shape. Pinpointed blobs, mapped on a slightly inflated version of the surface, are supposed to
correspond to the two putative central sulcus sulcal roots (inferior and superior); the indicated scale (with its logarithm in brackets) correspondto their scale of
apparition.

B. Stability Relative to Curvature-Based Feature

Several choices made to perform the studies described in this
paper are arbitrary (mean curvature and heat equation). We hy-
pothesize, however, that the structural anatomical information
we are interested in is stable across various curvature-based
features. In order to illustrate this idea, the central sulcus primal
sketch computed from our mean curvature estimation has been
compared to an equivalent sketch computed from a map of the
distance between each node and its mesh neighborhood
barycenter , signed by the scalar product between

and the normal at node (see Fig. 11). While some
variability could be observed among the objects extracted at
the lowest levels of scale, the highest part of the sketches rely
on isomorphic sets of bifurcations defining the same candidates
for the central sulcus roots.

C. Reproducibility Across Individuals

The primal sketch has been built from ten different left hemi-
spheres in order to check if the two sulcal root model of the
central sulcus could be highlighted as an invariant of the cortex
morphogenesis. The supports of the two GLBs supposed to cor-
respond to the two putative sulcal roots are mapped on an in-

flated version of the surface, for the sake of visualization (see
Fig. 13). For each brain, the scale has been chosen slightly be-
fore the event leading to the merge of the two sulcal roots into
the whole central sulcus. In each case, the two GLBs are located
on both sides of the central sulcus wall deformations looking
like a buried gyrus. It should be noted that the spatial extent
of the GLBs is not supposed to have an accurate localization
power. Dedicated buried gyrus detection algorithms initialized
by the localization of the GLB minima could indeed provide a
better result for further studies. The goal of the primal sketch
is mainly structural: highlighting the fetal structure of the adult
folding patterns.

D. Discussion

The previous results have shown that some hidden informa-
tion about the morphogenesis of the cortical folding patterns
could be recovered from the remaining curvature of the surface
at adult age. This information could help to overcome the prob-
lems related to the interindividual variability of these patterns.
Our results, however, are related to one of the simplest sulci,
and more work is required to analyze whether the current primal
sketch structure is sufficient to highlight a stable organization of
the sulci made up of more sulcal roots. For instance, it has to be
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proved that the primal sketch scale space blob set includes all
the sulcal roots that have to be localized. The link between fetal
sulcal roots and their putative primal sketch analogue, indeed,
may be more intricate than for the central sulcus case, because
several merge events are then involved. This could call for the
development of more sophisticated anisotropic scale spaces.

While a first manual exploration is required to try to match
the primal sketch-based representations with our current sulcal
root maps (see Fig. 12), an automatic strategy should be de-
vised to get a more reliable generic model. Few approaches have
been proposed for such inference of high level models under-
lying the brain anatomy. Some ideas could stem from similar
work done from skull crest lines [73]. Another attractive direc-
tion consists of Markovian models for the comparison of primal
sketches developed to match activation maps across individuals
[67]. The underlying idea consists in labeling simultaneously a
large number of sketches, each label corresponding to an en-
tity relatively stable across individuals in terms of shape, local-
ization and surrounding. Finally, when such a sulcal root-based
generic model will have been inferred from a set of brains, auto-
matic labeling methods might be used to match it with any new
primal sketch [35], [74]. It should be noted, besides, that the
group analysis of geodesic scale-spaces of 2-D maps painted on
the cortical surface is a generic tool, which may be of interest
in other contexts such as in functional MRI/positron emission
tomography studies with statistical maps [63], [67], or for the
study of cortical thickness maps [68].

VI. CONCLUSION

In this paper, we have shown that new approaches to the
understanding of the variability of brain structure can be de-
vised taking into account the variability of the brain morphogen-
esis. Such approaches could overcome the difficulties of iconic
template-based methods to deal with structurally different pat-
terns. The new structural multiscale-based representation of the
sulcal folding patterns presented in this paper will be used to
infer a finer grained than usual generic model of the human cor-
tical surface [21], [25]. Such a model would greatly improve
our current understanding of the cortex variability, and help for
finding stable anatomical landmarks. These landmarks would be
useful, for instance, employed as geometrical deformation con-
straints in warping processes [43]–[46], or for defining reliable
parcellations of the cortical surface [75]. In the future, longitu-
dinal time series of brain images will be of great help to val-
idate our approach. Hence, long-term studies of brain growth
processes will be used both as answers to neuroscience ques-
tions and as inspiration for new methodological development.

APPENDIX

Stability of the Numerical Scheme

The numerical resolution of the previous PDE must fulfill
convergenceandstability criteria to give satisfactory results.

Without loss of generality, let us consider a 1-D heat
diffusion-like (parabolic) PDE

(5)

( is time, the linear coordinate, and a constant). Assuming
that the temperature field (in our case the mean curvature field)
is sampled by a regularly-spaced grid (with spatial sampling
step ), a finite-differences approach to approximate the par-
tial derivatives yields

(6)

(7)

where is the temporal sampling step, and stands for
, i.e., the value of the function at the node and

at the instant . Using this, approximate values of the
function (as opposed to the exact values) can be computed.
Substituting for in (6) and (7), we have

(8)

where .
A highly important concept in this context is thetruncation

error (so called because a truncation of a Taylor series is implied
by approximations such as the ones above described) [76], [77].
The truncation error is simply the remainder of (8) when
is replaced by the exact solution. The numerical resolution of
the PDE will be saidconsistentif the truncation error tends to
zero as and tend to zero. In other words, consistency
ensures that finer meshes and smaller iteration time steps will
always lead to more accurate approximations of the actual PDE
solutions at each time step and at each node.

While obviously a very desirable feature, consistency does
not guarantee that the resolution will be stable. Forstability to
be attained, the actual error ( ) must tend to zero as
the truncation error tends to zero, otherwise the errors will
tend to propagate rapidly and the final results will be devoid of
sense. The evolution of in time is related to the truncation
error in the following way [76]:

(9)

The important point is that the coefficients of the termson
the right add up to unity and that, provided that , they
are all positive. This way, the error at time step is bounded
by in the following way:

(10)

This is a sufficient condition for stability [76]. Thus, a valid
numerical implementation of this simple parabolic equation
would require that .

The present case differs from the example above in two
points: 1) the (2-D) mesh is not regular (nonuniform internodal
separation) and 2) the estimation of the partial derivatives, al-
though based on finite differences, relies upon the least-squares
resolution of a linear system. These specificities must be
accounted for in a discussion of the appropriate stability
guidelines.

The PDE to solve at each node location has the form

(11)
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The approximate result satisfies

(12)

where stands for “estimated partial derivative of
at node and time point ” (similarly for ). The error

can be written as

(13)

Combining (13) and (4) leads to

(14)

where (respectively, ) stand for “the element contained
in the third (with respect to the fourth) line andth column
of the pseudoinverse matrix pertaining to the node located at

,” and stands for “the error at theth neighbor of the
node located at , at instant .” A sufficient condition
for the error to be bounded is that the coefficients affecting all
of the add up to unity (which is clearly the case) and that they
are all positive. Denoting , this translates as

AND (15)

From a practical point of view, these constraints apply to the
elements of the matrix. High elements in those lines of
the matrix that play a role in the estimation of the second
derivatives may lead to the violation of the left-hand condition in
(15) and, thus, to instability. While the analogy will not be pur-
sued further, it is noteworthy that this constraint can be seen as
putting limits to the variance of the implied least-squares estima-
tion [78]: high-pseudoinverse values denote linear systems with
unacceptably high condition numbers (nearly collinear lines in
the corresponding matrix) and, therefore, high-estimation vari-
ance, liable to cause important error propagation in an iterative
process.

The goal, thus, is to minimize estimation variance in order
to avoid having to employ very small ’s that could ulti-
mately require prohibitively high-computation times. With this
purpose, a simple condition number minimizing algorithm
was implemented at the lattice creation stage. It relies on
the fact that the orientation of the referential used to define
relative neighbors coordinates is arbitrary. Minimization of the
condition number is performed by successively rotating the
referential of the nodes that fail to comply with a user-provided
threshold. In cases where two nodes are very close to each other,

this procedure may not be enough to guarantee a reasonably
low value for the critical . In such cases, an intervention at
the level of the lattice configuration may be required.

For typical examples of cortical lattices submitted to node
decimation (resulting number of nodes:20 000–25 000), the
fulfillment of the left-hand condition in (15) required ’s of

0.5–0.7. However, practice revealed that’s as high as one
led to stable systems, showing that the error can be bounded
even in cases where the sufficient condition for stability is
violated.

The right-hand condition in (15) is apparently more difficult
to fulfill. However, the several violations that were identified
in the tested lattices were not an obstacle to a stable numerical
resolution, showing that the fulfillment of the first condition is
in itself enough to guarantee a satisfactory bounding of the error.

The application of postprocessing procedures (e.g., deci-
mation) to the lattice may lead to situations in which node
neighbors are fewer than the number of variables estimated
locally. This number will be five in the case of the second-order
Taylor expansion necessary to estimate the Laplacian, or four if
isotropy is assumed and the term is considered to
be zero, as in the current implementation. A deficit of neighbors
will lead to indeterminacy of the corresponding linear system,
which means that the solution will not be unique. One of
the options to pick one among the infinity of solutions, thus,
obtained is to select the solution with the smallest norm. This
is the condition implied by the Moore–Penrose pseudoinverse
[79] based resolution that we adopted. This was shown to be
a sensible option in practice: provided that the nodes with
less than four neighbors constitute a small (1%) proportion
of the total number of nodes, the final results do not differ
significantly from those obtained in a situation of system
determinacy all over the lattice.
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