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Abstract

A generic de.nition of fuzzy morphism between graphs (GFM) is introduced that includes classical graph related problem
de.nitions as sub-cases (such as graph and subgraph isomorphism). The GFM uses a pair of fuzzy relations, one on the
vertices and one on the edges. Each relation is a mapping between the elements of two graphs. These two fuzzy relations are
linked with constraints derived from the graph structure and the notion of association graph. The theory extends the properties
of fuzzy relation to the problem of generic graph correspondence. We introduce two complementary interpretations of GFM
from which we derive several interesting properties. The .rst interpretation is the generalization of the notion of association
compatibility. The second is the new notion of edge morphism. One immediate application is the introduction of several
composition laws. Each property has a theoretical and a practical interpretation in the problem of graph correspondence that is
explained throughout the paper. Special attention is paid to the formulation of a non-algorithmical theory in order to propose
a .rst step towards a uni.ed theoretic framework for graph morphisms. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Graph representations are widely used for dealing
with structural information, in di8erent domains such
as networks, psycho-sociology, image interpretation,
pattern recognition, etc. One important problem to
be solved when using such representations is graph
matching. In order to achieve a good correspondence
between two graphs, the most used concept is the one
of graph isomorphism and a lot of work is dedicated
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to the search for the best isomorphism between two
graphs or subgraphs. However in a number of cases,
the bijective condition is too strong, and the prob-
lem is expressed rather as an inexact graph match-
ing problem. For instance, inexact graph matching
appears as an important area of research in the pat-
tern recognition .eld [18,29]. Several researches use
graphs to represent the knowledge and the informa-
tion extracted for instance from images, where vertices
represent the segments or entities of the image and
edges show the relationships between them. Examples
of areas in which this type of representation is used are
cartography, robotics and autonomous agents, char-
acter recognition, and recognition of brain structures
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[28,29]. Graph matching is used when the recognition
is based on comparison with a model for instance. One
graph represents the model, and another one the im-
age where recognition has to be performed. Because
of the schematic aspect of the model (atlas or map for
instance) and of the diDculty to segment accurately
the image into meaningful entities, no isomorphism
can be expected between both graphs. Such problems
call for inexact graph matching. Similar examples can
be found in other .elds.

Most work in inexact graph matching rely on the
optimization of some functional. This functional usu-
ally measures the adequacy between vertices and be-
tween edges, and involves both the similarity between
attributes of vertices and of edges, and also the struc-
ture of the graph. It is often de.ned in an ad hoc way,
depending on the application at hand. For instance,
some constraints can be relaxed or probabilized, cor-
respondence can be de.ned iteratively by relaxing
progressively local constraints, etc. The main focus
of papers in this domain is the optimization part of
the process. Existing methods include combinatorial
optimization techniques [9,33], relaxation techniques
[14,16,38], expectation maximization (EM) algorithm
[8,15], Bayesian networks and estimation of distribu-
tion algorithms [3], genetic algorithms [29], and neu-
ral networks. Other methods are more concerned by
the structure itself of the graphs and use tree search
and propagation techniques [12,32,40], heuristic based
graph traversing [6,25,36,37], graph editing [4,5,23],
and graph labeling based on probabilistic models of
attributes [11,26,34].

Since no bijection can be expected for inexact graph
matching problems, the concept of isomorphism has
to be replaced by the most generic concept of mor-
phism (or homomorphism). Surprisingly, the increas-
ing literature on inexact graph matching does not fo-
cus on the formalization of this concept, and no clear
and uni.ed de.nition of morphism between graphs
can be exhibited. Therefore, as opposed to the works
mentioned above which concentrate on the optimiza-
tion, we focus in this paper on the formulation of a
non-algorithmical theory in order to propose a .rst
step towards a uni.ed theoretic framework for graph
morphisms.

The work which is the closest to our is the con-
tribution of W. Bandler to the area of fuzzy re-
lational products and fuzzy relational morphisms

(see [1]). B. Juliano and W. Bandler have been work-
ing on fuzzy morphisms between graph structures as
applied to cognitive diagnosis [20]. Their formulation
for fuzzy morphisms between Hasse diagrams relies
on both a vertex mapping and a path (or edge) map-
ping [21], which is an approach similar to ours. They
also apply fuzzy morphisms between fuzzy graph
structures called fuzzy cognitive maps. These are
used to model chains-of-thought, de.ned as a “string
of cognitive states representing some aspects of an
individual’s thought processes”. Homomorphisms are
then used to derive a degree of similarity between
chains-of-thought structures. While they focus on in-
ference and decision making (see e.g. [19]), we focus
on generic de.nitions, along with their interpretations
and properties.

Also the huge literature on graph or subgraph iso-
morphisms is of little help for solving inexact match-
ing problems. The aim of this paper is to .ll this
gap. We propose to de.ne fuzzy morphisms between
graphs, and to study their properties. We rely on fuzzy
set theory [13,41] to account for imprecision in the
matching and non-bijective aspects, and make use
of the notion of fuzzy relations [22,30,42]. The pro-
posed approach includes as particular cases the clas-
sical notions of graph or subgraph isomorphisms, and
of set morphisms. It applies to most kinds of graph
(relational, attributed, fuzzy, fuzzy attributed, topo-
logical graphs, see e.g. [17,18,24,29,31] for the main
de.nitions), including speci.c graphs used in image
processing and pattern recognition such as adjacency,
distance based, hierarchical, and semantic graphs.

After the introduction of a few notations, the def-
initions of fuzzy relations are recalled in Section 2,
and interpreted as fuzzy association graphs. Section 3
is the core of this paper, and introduces the de.nition
of fuzzy morphism between graphs. Two original in-
terpretations are given. In Section 4, we propose com-
position laws between such morphisms. In Section 5,
we detail some properties and interpretations. In Sec-
tion 6, we conclude and give some hints on possible
applications.

2. Preliminaries

We .rst introduce some notations and recall some
basics about graph and subgraph isomorphisms. We
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denote by Gi= (Ni; Ei) a graph where Ni is the set of
vertices and Ei⊆Ni×Ni is the set of edges (or arcs);
the integer i indexes the graph. Vertices and edges of
the graph Gi are also indexed by i. For instance, u1
denotes a vertex of graph 1 (G1). Edges are denoted by
(ui; vi), where ui and vi are the vertices at the endpoints
of the edge, or by ei. We assume in this paper that
Ni and Ei are .nite sets. When a bijective matching
is searched between elements of the graphs G1 and
G2, the notion of graph (or subgraph) isomorphism is
used (see e.g. [6,35]).

De�nition 1. A mapping f : N1 →N2 is a graph iso-
morphism i8: |N1|= |N2|; |E1|= |E2|, ∀u2 ∈N2; ∃!u1 ∈
N1; f(u1) = u2, and ∀(u2; v2)∈E2; ∃!(u1; v1)∈E1;
f(u1) = u2; f(v1) = v2.

The bijective correspondence between the whole
graphs is a very restrictive constraint. Often, only parts
of the graphs are expected to be matched bijectively,
calling for the notion of subgraph isomorphism, de-
.ned as an injective function from a subset of N1

into N2.

De�nition 2. A mapping f : N1 →N2 is a subgraph
isomorphism i8: ∃N ′

1 ⊆N1;∃N ′
2 ⊆N2;∃E′1 ⊆E1;∃E′2 ⊆

E2 such that the restriction of f to the graphs (N ′
1; E

′
1)

and (N ′
2; E

′
2) is a graph isomorphism.

We now recall some basic notions about fuzzy rela-
tions, since the proposed de.nition of fuzzy morphism
will rely on these notions, and on their interpretation
as fuzzy association graphs. More details about these
concepts can be found in [13,22,30,42].

Let S1 and S2 be two sets, and �1 and �2 the mem-
bership functions of two fuzzy subsets of S1 and S2,
respectively: �1 : S1 → [0; 1], �2 : S2 → [0; 1].

De�nition 3. The function � : S1×S2 → [0; 1] is a
fuzzy relation on �1×�2 i8:

∀(x; y) ∈ S1 × S2; �(x; y)6�1(x) ∧ �2(y); (1)

where ∧ denotes the minimum. This de.nition is the
most generic one. Particular cases can be found in [30]
for S1 = S2, and in [22] for relations on S1×S2 (instead
of �1×�2). This generic de.nition is mentioned in
[42], but a deeper study of its properties can be found
only for these two particular cases.

However, several results can be extended to Def-
inition 3 in the general case. In the following, we
will only mention the properties that are useful for
our aim. Proofs are not given, and can be found
in [22,30].

Two de.nitions of fuzzy graphs can be found in
the literature. The .rst one is a fuzzy subset of S1×S2
[22]:

De�nition 4. A fuzzy graph � is a function � : S1×S2
→ [0; 1].

This corresponds to the de.nition of a fuzzy rela-
tion (De.nition 3) in the case where the membership
functions �i are constant and equal to 1. If S1 and S2
are vertices of graphs, then � can be interpreted as a
weighting function on edges joining vertices of S1 to
vertices of S2.

The second de.nition is restricted to the case
S1 = S2 = S, and applied on a fuzzy subset � of S [30]:

De�nition 5. A fuzzy graph G= (�; �) is a pair of
functions � : S→ [0; 1]; � : S×S→ [0; 1] which satis-
.es Eq. (1).

De.nition 4 is adapted to cases where two sets of
vertices have to be distinguished, these two sets being
possibly equal. De.nition 5 considers vertices in one
unique set, but considers a fuzzy subset of it to de.ne
the graph. Both de.nitions are particular cases of a
fuzzy relation (De.nition 3) and therefore share its
properties.

De�nition 6. Let �1 and �2 be two fuzzy relations on
�1×�2 and �2×�3, respectively. For i∈{1; 2; 3}, �i
is a function from Si into [0; 1], and for i∈{1; 2}, �i
is a function from Si×Si+1 into [0; 1]. The max–min
composition of �1 and �2, denoted by �1◦�2, is de.ned
as [42]

∀(u1; u3) ∈ S1 × S3; (�1 ◦ �2)(u1; u3)

= sup
u2∈S2

{�1(u1; u2) ∧ �2(u2; u3)}; (2)

where ∧ is the minimum.

Proposition 7. The max–min composition �1◦�2 is a
fuzzy relation on �1×�3.
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Proposition 8. The max–min composition of fuzzy
relations is associative:

∀i ∈ {1; 2; 3; 4}; �i : Si → [0; 1];

∀i ∈ {1; 2; 3}; �i : Si×Si+1 → [0; 1]; (3)

(�1 ◦ �2) ◦ �3 = �1 ◦ (�2 ◦ �3) = �1 ◦ �2 ◦ �3:

The projections of a fuzzy relation on S1 and S2 are
de.ned as follows [22].

De�nition 9. Let � be a fuzzy relation on �. The .rst
projection of � (or projection of � onto S1) is a fuzzy
subset of S1 de.ned by the following membership
function:

∀u1 ∈ S1; �(1)
S1 (u1) = sup

u2∈S2
�(u1; u2): (4)

The second projection of � (or projection of � onto
S2) is a fuzzy subset of S2 de.ned by the following
membership function:

∀u2 ∈ S2; �(2)
S2 (u2) = sup

u1∈S1
�(u1; u2): (5)

The reNexivity, symmetry and transitivity properties
are de.ned in [30] for a fuzzy relation in the case
where S1 = S2 = S and �1 = �2 = �, i.e. for De.nition
5 of a fuzzy graph.

De�nition 10. A fuzzy relation is reNexive i8 ∀u ∈
S; �(u; u) = �(u).

De�nition 11. A fuzzy relation is symmetric i8
∀(u; v) ∈ S×S; �(u; v) = �(v; u).

De�nition 12. A fuzzy relation is (max–min) transi-
tive i8 �◦�6�.

It is worth noting that symmetry and transitivity do
not depend on �. Several other properties can be found
in [30], but are not detailed here.

3. Fuzzy morphisms between graphs

In this section, we introduce a new formalism for
morphisms between graphs, and propose a de.nition
of fuzzy morphisms. We also give some interpreta-
tions and properties.

3.1. De7nition

De�nition 13. A fuzzy morphism (��; ��) between
graphs G1 and G2 is a pair of mappings �� : N1×N2 →
[0; 1] and �� : N1×N2×N1×N2 → [0; 1] which satis.es
the following inequality:

∀(u1; v1) ∈ N1 × N1; ∀(u2; v2) ∈ N2 × N2;

��(u1; u2; v1; v2)6 ��(u1; u2)∧ ��(v1; v2):
(6)

The mapping �� is called vertex morphism and
�� is called edge morphism. They are linked by
Eq. (6). GFM will stand for graph fuzzy morphism
(fuzzy morphism between graphs) in the rest of the
paper.

The term morphism refers to algebra, where it de-
notes a mapping between two spaces endowed with an
internal composition law, which is preserved by the
mapping. Here the introduced morphism has a mean-
ing which is similar to the one of algebra morphism,
but not rigorously the same. The binary relation de.n-
ing the edges between vertices of the graphs should
be kept to some degree by the fuzzy morphism. It is
a natural extension of the usual notion of graph iso-
morphism.

The edge morphism is formalized as a mapping
from N1×N2×N1×N2 and not from (N1×N2)×(N1

×N2). The main reason is that the .rst Cartesian
product is generic and allows other interpretations
(see Section 3.2).

Two simple but fundamental properties can be de-
rived from this de.nition. If S1 =N1 and S2 =N2, we
can state from De.nition 4:

Proposition 14. A vertex morphism is a fuzzy rela-
tion on a discrete crisp set; and more precisely a fuzzy
graph according to De7nition 4.

Proof. The proof is immediate.

Proposition 15. A fuzzy morphism (��; ��) is a fuzzy
graph according to De7nition 5.

Proof. If we set S =N1 ×N2, �� is a fuzzy subset of
S. The mapping �� is de.ned on S × S, and is therefore
a fuzzy relation on ��× �� (since Eq. (6) guarantees
that Eq. (1) is satis.ed). Thus we recover De.nition
5 of a fuzzy graph.
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We de.ne the following partial order relation on
fuzzy morphisms (de.ned on the same graphs), that
will be useful in some properties.

De�nition 16. Let (��; ��) and (��; ��) be two fuzzy
morphisms between the same graphs G1 and G2. The
partial ordering on vertex morphisms is de.ned as
follows:

�� 6 �� ⇔ ∀(u1; u2) ∈ N1 × N2;

��(u1; u2)6 ��(u1; u2):
(7)

In a similar way, the partial ordering on edge mor-
phisms is de.ned as follows:

�� 6 �� ⇔ ∀(u1; u2; v1; v2) ∈ N1 ×N2 ×N1 ×N2;

��(u1; u2; v1; v2)6��(u1; u2; v1; v2):
(8)

It is straightforward to see that this de.nes indeed
a partial order relation.

Fig. 1 is an example of graphical representation of
GFM as a pair of weighted bipartite graphs. The width
of the edges of the bipartite graphs is proportional to
the membership value. Dashed lines represent a low
quality association with respect to what could be in-
tuitively expected. Non represented correspondences
have a null value. For instance ��(e1; a2) = 0:6 and
��(d1; b2) = 0:2; the second association has a low
value with respect to the other one, and Eq. (6) im-
plies: ��(e1; a2; d1; b2)60:2. Another example where
the association is this time high is: ��(b1; b2) = 0:9
and ��(e1; d2) = 0:9; therefore ��(b1; b2; e1; d2)
60:9.

3.2. Interpretations

One important characteristic of the proposed de.-
nition is that it relies on the Cartesian product of sets.
Taking the Cartesian product of S =N1 ×N2 with
itself (for the edge morphism) indirectly involves
Ei⊆Ni×Ni. The edge morphism can be interpreted
in two complementary ways:

• S × S = (N1 ×N2)× (N1 ×N2) which corresponds
to the classical interpretation of the notion of as-
sociation compatibility via the edges, and which
we call internal interpretation. The compatibility
between object associations is often used in pat-
tern recognition for quantifying the inNuence of the

Fig. 1. Example of fuzzy morphism between two directed graphs.
Only the edges existing in Ni ×Ni are considered. The values of
the vertex morphism �� are given arbitrarily in this example. For
the edge morphism ��, only an upper bound of its value is given
for each edge, according to Eq. (6). The width of the edges of
the bipartite graph interpretation is proportional to the member-
ship value. Associations represented by dashed lines are wrong
associations with respect to what could be intuitively expected:
the values of these associations are very low.

matching of two objects on the one of two other
objects, by checking the consistency between both
associations. This property is illustrated in Fig. 2
(the edges (u1; v1) and (u2; v2) are not drawn to il-
lustrate the fact that they are not involved directly
within this interpretation).

• S × S (N1 ×N1)× (N2 ×N2)⊇E1 ×E2 which is
the new notion of edge morphism. The arrow  
indicates that we make N1 ×N1 and N2 ×N2 ex-
plicit, but it is not an equality. We call it external
interpretation. The notion of edge morphism gives
importance to the edges themselves by exchang-
ing the order of the sets in the Cartesian product.
This interpretation allows us to check the corre-
spondence between edges, and therefore to account
for the structure of the graphs. This property is il-
lustrated in Fig. 3 by an horizontal arrow linking
both edges.

Fig. 1 represents the external interpretation of the mor-
phism with links between the edges of G1 and G2.
Fig. 4 represents the internal interpretation of the same
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Fig. 2. Internal interpretation of edge morphism as association
compatibility. For this example, the question is: is the association
of u1 with u2 consistent (and to which degree) with the association
of v1 with v2?

Fig. 3. External interpretation of the edge morphism as the match-
ing between edges themselves. For this example, the question is:
what is the degree of association between edge (u1; v1) and edge
(u2; v2)?

example with a representation as a simpli.ed fuzzy
graph where each vertex represents an association be-
tween an element of N1 and an element of N2, and
each edge represents a link between two associations
formalized by ��.

A matrix representation of a morphism is also
possible: the vertex morphism is a matrix on
N1 ×N2, and the edge morphism is a matrix on
(N1 ×N1)× (N2 ×N2). But this representation is not
useful for our purpose: the other two representations
graphically translate the morphism interpretations.

This important distinction allows us to deduce a
number of properties from the fuzzy relations and the
edge morphisms.

The change of order in the Cartesian product is not
made explicitly, but for the bene.t of both interpreta-
tions, it is enough to consider the two following

Fig. 4. Internal interpretation of the fuzzy morphism between the
graphs of Fig. 1. Each vertex of this graph is an association of
one vertex of G1 with one vertex of G2 that is weighted by the
membership value of �� . The width of the border of the vertex
is proportional to this value. Each edge of this graph represents a
non-null value of �� linking two associations. The corresponding
value of �� is the weight of the edge (only an upper bound is
mentioned). The width of the edge is proportional to its value.

decompositions of (u1; u2; v1; v2)∈N1 ×N2 ×N1 ×N2:

Internal External

N1 ×N2 N1 ×N1︷ ︸︸ ︷ ︷ ︸︸ ︷
( u1; u2; v1; v2 ) ( u1; u2; v1; v2 ):︸ ︷︷ ︸ ︸ ︷︷ ︸

N1 ×N2 N2 ×N2

These two interpretations can be considered as two
orthogonal views of the same mathematical object, an
internal one and an external one. The term internal
refers to a composition law that we de.ne in the next
Section between morphisms de.ned on the same sets,
and which is therefore an internal composition law.

4. Compositions of fuzzy morphisms

4.1. Internal max–min composition law

De�nition 17. Let (��; ��) and (��; ��) be two graph
morphisms: �� :N1 ×N2 → [0; 1], �� :N1 ×N2 ×N1 ×
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Fig. 5. Interpretation of the internal max–min composition as the search of a path of better compatibility.

N2 → [0; 1] and �� :N1 ×N2 → [0; 1], �� :N1 ×N2 ×N1

×N2 → [0; 1]. The internal max–min composition of
these two morphisms is denoted by (��; ��) • (��; ��) =
(�� • ��; �� • ��) and de.ned as

(�� • ��)(u1; u2) = ��(u1; u2) ∨ ��(u1; u2); (9)

(�� • ��)(u1; u2; w1; w2)

= sup
(v1 ;v2)∈N1×N2

{��(u1; u2; v1; v2)

∧��(v1; v2; w1; w2)}; (10)

where (�� • ��) is the internal composition of vertex
morphisms, and (�� • ��) is the internal composition
of edge morphisms.

Proposition 18. The internal max–min composition
(��; ��) • (��; ��) is a morphism between fuzzy graphs.

Proof. A vertex morphism is a fuzzy relation. The
composition law described by Eq. (9) of De.nition
17 is a union of fuzzy relations, which is still a
fuzzy relation [22]. This shows the proposition for
the composition of vertex morphisms. An edge mor-
phism is also a fuzzy relation. The composition law
de.ned by Eq. (10) of De.nition 17 is the one of
fuzzy relations (see De.nition 6) and the result is a
fuzzy relation (see Proposition 7 applied here with
S1 = S2 = S3 =N1 ×N2), which shows the proposition
for the composition of edge morphisms.

The internal composition law can be interpreted as
the fusion of two morphisms. Another way to under-
stand this de.nition is to interpret the composition
law as the search for a path of better compatibil-
ity in the edge morphism considered as a fuzzy
association graph. Let us assume that in the def-

inition of edge morphism composition, the sup is
obtained for the pair (z1; z2)∈N1 ×N2. Then we have
(�� • ��)(u1; u2; w1; w2) = ��(u1; u2; z1; z2) ∧ ��(z1; z2;
w1; w2). By interpreting (�� • ��)(u1; u2; w1; w2) as the
compatibility between the association of u1 and w1

with the association of u2 and w2, it can be said that
this compatibility is better than the compatibility of
the 4-tuple (u1; u2; z1; z2) measured by �� and than the
compatibility of the 4-tuple (z1; z2; w1; w2) measured
by ��. Therefore, the composition tries to improve the
compatibility between two pairs of associations by
going through a third association (Fig. 5).

Proposition 19. The internal max–min composition
law is associative.

Proof. The composition of vertex morphisms is de-
.ned by a max, which is associative. The composi-
tion of edge morphisms is de.ned as the composition
of fuzzy relations which is associative (see Proposi-
tion 8).

This shows that the set of fuzzy morphisms en-
dowed with the internal max–min composition law is
a monoid.

The composition of vertex morphisms is commu-
tative. But in general, the composition of edge mor-
phisms is not commutative. However, edge morphisms
may commute if some symmetry properties are satis-
.ed (this point is addressed in Section 5).

The internal composition law can be iterated several
times on the same morphism.

De�nition 20. An edge morphism �� to the power
n (in the sense of internal composition) is de-
noted by �n� and de.ned as the following morphism:
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∀(u1; u2; v1; v2)∈N1 ×N2 ×N1 ×N2,

�n�(u1; u2; v1; v2) = (�� • · · · • ��︸ ︷︷ ︸
n−1 compositions

)(u1; u2; v1; v2):

(11)

Note that the power of an edge morphism is de.ned
uniquely since the composition law is associative.

By extension, we de.ne �0
� as follows:

�0
�(u1; u2; v1; v2) = 0 if (u1; u2) �= (v1; v2);

�0
�(u1; u2; u1; u2) = ��(u1; u2):

(12)

This de.nition is consistent with the internal compo-
sition law and with the de.nition of the power of an
edge morphism since the following result holds:

Proposition 21. �0
� • ��= �� • �0

� = ��.

Proof. ∀(u1; u2; w1; w2)∈N1×N2×N1×N2, we have

(�� • �0
�)(u1; u2; w1; w2)

= sup
(v1 ;v2)∈N1×N2

{�0
�(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)}

= �0
�(u1; u2; u1; u2) ∧ ��(u1; u2; w1; w2)

= ��(u1; u2) ∧ ��(u1; u2; w1; w2)

= ��(u1; u2; w1; w2);

since ��(u1; u2; w1; w2)6��(u1; u2). The second equal-
ity can be shown in a similar way.

Proposition 22. The internal max–min composition
is increasing with respect to the order relations on
fuzzy morphisms; i.e.

�� 6 �′� and �� 6 �′� ⇒ �� • �� 6 �′� • �′�;
(13)

�� 6 �′� and �� 6 �′� ⇒ �� • �� 6 �′� • �′�:
(14)

Proof. Let us just show the relation for edge
morphisms. Since ��6�′� and ��6�′�, we have

∀(u1; u2; v1; v2; w1; w2)∈ (N1 ×N2)3:

��(u1; u2; v1; v2) ∧ ��(v1; v2; w1; w2)

6 �′�(u1; u2; v1; v2) ∧ �′�(v1; v2; w1; w2):

Therefore we have, ∀(u1; u2; w1; w2)∈N1 ×N2 ×N1 ×
N2:

(�� • ��)(u1; u2; w1; w2)

6 sup
(v1 ;v2)∈N1×N2

{�′�(u1; u2; v1; v2)

∧ �′�(v1; v2; w1; w2)}
6 (�′� • �′�)(u1; u2; w1; w2):

4.2. External max–min composition

De�nition 23. Let (��; ��) and (��; ��) be two graph
morphisms: �� :N1 ×N2 → [0; 1], �� :N1 ×N2 ×N1 ×
N2 → [0; 1] and �� :N2 ×N3 → [0; 1], �� :N2 ×N3

×N2 ×N3 → [0; 1]. The external max–min com-
position of these two morphisms is denoted by
(��; ��) ◦ (��; ��) = (�� ◦ ��; �� ◦ ��) and de.ned as

(�� ◦ ��)(u1; u3) = sup
u2∈N2

{��(u1; u2) ∧ ��(u2; u3)};
(15)

(�� ◦ ��)(u1; u3; v1; v3)
= sup

(u2 ;v2)∈N2×N2

{��(u1; u2; v1; v2)

∧ ��(u2; u3; v2; v3)}; (16)

where (�� ◦ ��) is the external composition of vertex
morphisms, and (�� ◦ ��) is the external composition
of edge morphisms.

Proposition 24. The external max–min composition
(��; ��) ◦ (��; ��) is a morphism between fuzzy graphs.

Proof. From Proposition 14, a vertex morphism is
a fuzzy relation. This composition law is the one of
fuzzy relations, which shows the proposition for the
composition of vertex morphisms. The external com-
position of edge morphisms needs some more deriva-
tion: ∀(ui; vi)∈Ni×Ni, with i ∈ {1; 2; 3}, we have:

��(u1; u2; v1; v2)6 ��(u1; u2) ∧ ��(v1; v2);
��(u2; u3; v2; v3)6 ��(u2; u3) ∧ ��(v2; v3):
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Fig. 6. Interpretation of the external max–min composition law as the search of the best paths over G2 constituted by an association
between an edge of G1 and an edge of G2, and an association between this edge of G2 and an edge of G3.

Therefore,

��(u1; u2; v1; v2) ∧ ��(u2; u3; v2; v3)

6 ��(u1; u2) ∧ ��(v1; v2) ∧ ��(u2; u3) ∧ ��(v2; v3)

6 (�� ◦ ��)(u1; u3) ∧ (�� ◦ ��)(v1; v3);

∀(u2; v2) ∈ N2 × N2:

By taking the sup over (u2; v2)∈N2 ×N2 in the left
part, we obtain:

(�� ◦ ��)(u1; u3; v1; v3)
6 (�� ◦ ��)(u1; u3) ∧ (�� ◦ ��)(v1; v3):

This proves Eq. (6).

In De.nition 23, the quantity ��(u1; u2; v1; v2)∧
��(u2; u3; v2; v3) can be interpreted as a “quality” of
the path between edge (u1; v1) of G1 and edge (u3; v3)
of G3 which goes through edge (u2; v2) of G2. The
external edge morphism composition can then be in-
terpreted as the search of the best of such paths over
the edges of G2 (Fig. 6).

Proposition 25. The external composition of
graph morphisms is associative. Let (��; ��);
(��; ��) and (��; ��) be three graph morphisms:
�� :N1 ×N2 → [0; 1]; �� :N1 ×N2 ×N1 ×N2 → [0; 1];
�� :N2 ×N3 → [0; 1]; �� :N2 ×N3 ×N2 ×N3 → [0; 1]
and �� :N3 ×N4 → [0; 1], �� :N3 ×N4 ×N3 ×N4

→ [0; 1]:

(��; ��) ◦ ((��; ��) ◦ (��; ��))

= ((��; ��) ◦ (��; ��)) ◦ (��; ��)

= (��; ��) ◦ (��; ��) ◦ (��; ��): (17)

Proof. From Proposition 8, the max–min composi-
tion of vertex morphisms is associative. So we just
have to prove the proposition for the external com-
position of edge morphisms. ∀(ui; vi)∈Ni×Ni, with
i∈{1; 2; 3; 4} we have

(�� ◦ (�� ◦ ��))(u1; u4; v1; v4)

= sup
(u3 ;v3)∈N3×N3

{
sup

(u2 ;v2)∈N2×N2

{��(u1; u2; v1; v2)

∧ ��(u2; u3; v2; v3)}

∧��(u3; u4; v3; v4)
}

= sup
(u3 ;v3)∈N3×N3

{
sup

(u2 ;v2)∈N2×N2

{��(u1; u2; v1; v2)

∧��(u2; u3; v2; v3)

∧��(u3; u4; v3; v4)}
}
;

since ��(u3; u4; v3; v4) is independent of (u2; v2).
Therefore, we can exchange the sup over (u2; v2) and
the sup over (u3; v3), which shows the associativity.
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Note that other de.nitions of morphism composi-
tions are possible as max-product, max-average [30],
or more generally max-star [22]. Here we restrict to
the max–min compositions.

4.3. Preservation of internal composition by
external composition

Internal composition of graph morphisms is par-
tially preserved when applying external composition,
as expressed by the following proposition, which is a
kind of distributivity property:

Proposition 26. The external composition law is a
morphism (in the classical sense) between sets of ver-
tex morphisms endowed with internal composition
laws.
Let (��; ��); (�′�; �

′
�) and (��; ��) be three graph

morphisms: �� :N1 ×N2 → [0; 1]; �� :N1 ×N2×
N1 ×N2 → [0; 1]; �′� :N1 ×N2 → [0; 1], �′� :N1 ×N2

×N1 ×N2 → [0; 1] and �� :N2 ×N3 → [0; 1], �� : N2

×N3 ×N2 ×N3 → [0; 1]. The following property
holds:

�� ◦ (�′� • ��) = (�� ◦ �′�) • (�� ◦ ��): (18)

It should be observed in this equation that the .rst
and second internal compositions are applied on dif-
ferent sets. The .rst one applies on sets indexed by 1
and 2, while the second one applies on indices 1 and 3.

Proof. The proposition concerns vertex morphisms:
∀(u1; u3)∈N1 ×N3,

�� ◦ (�′� • ��)(u1; u3)

= sup
u2∈N2

{(�′� • ��)(u1; u2) ∧ ��(u2; u3)}

= sup
u2∈N2

{(��(u1; u2) ∨ �′�(u1; u2)) ∧ ��(u2; u3)}:

Since max and min are mutually distributive, we have

�� ◦ (�′� • ��)(u1; u3)

= sup
u2∈N2

{(��(u1; u2) ∧ ��(u2; u3)) ∨ (�′�(u1; u2)

∧��(u2; u3))}

= sup
u2 ∈N2

{��(u1; u2) ∧ ��(u2; u3)}

∨ sup
u2∈N2

{�′�(u1; u2) ∧ ��(u2; u3)}

= (�� ◦ ��)(u1; u3) ∨ (�� ◦ �′�)(u1; u3)
= (�� ◦ �′�) • (�� ◦ ��)(u1; u3):

This shows the proposition.

Conjecture. Let us consider the counterpart of
Eq. (18) for edge morphisms.
Let (��; ��); (�′�; �

′
�) and (��; ��) be three graph

morphisms: �� :N1 ×N2 →[0; 1]; �� :N1 ×N2 ×N1

×N2 → [0; 1]; �′� :N1 ×N2 → [0; 1]; �′� :N1 ×N2 ×N1

×N2 → [0; 1] and �� :N2 ×N3 → [0; 1]; �� :N2 ×N3 ×
N2 ×N3 → [0; 1]. The following property holds:

�� ◦ (�′� • ��)6 (�� ◦ �′�) • (�� ◦ ��): (19)

This inequality for edge morphisms (Eq. (19)) has
been shown experimentally from a large set of random
simulations. So we strongly believe that it holds. We
are currently working on a formal proof.

4.4. Projections

The .rst and second projections of a vertex mor-
phism can be easily de.ned, similarly as in De.nition
9 for fuzzy relations. Let (��; ��) be a graph morphism
between G1 and G2.

De�nition 27. The .rst (resp. second) projection of
the vertex morphism �� is de.ned as

∀u1 ∈ N1; ��
(1)
N1

(u1) = sup
u2∈N2

��(u1; u2); (20)

(
resp: ∀u2 ∈ N2; ��

(2)
N2

(u2) = sup
u1∈N1

��(u1; u2)
)
: (21)

Computing the .rst projection amounts to retain
the degree of the best correspondence between a ver-
tex of the .rst graph and each vertex of the second
graph. In a similar way, computing the second pro-
jection amounts to retain the degree of the best corre-
spondence between each vertex of the .rst graph and
a vertex of the second graph.

As opposed to vertex morphism, an edge morphism
can have internal and external projections.
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De�nition 28. The .rst (resp. second) internal pro-
jection of the edge morphism �� is de.ned by

∀(u1; u2) ∈ N1 × N2; ��
(1)
N1×N2

(u1; u2)

= sup
(v1 ;v2)∈N1×N2

��(u1; u2; v1; v2); (22)

(
resp: ∀(v1; v2) ∈ N1 × N2; ��

(2)
N1×N2

(v1; v2)

= sup
(u1 ; u2)∈N1×N2

��(u1; u2; v1; v2)

)
: (23)

This de.nition consists in eliminating the depen-
dence on one pair of vertices in N1 ×N2. The .rst
projection computes the best degree of compatibility
existing between the association (u1; u2) and all other
vertex associations. The second projection measures
the best degree of compatibility existing between all
vertex associations and the association (v1; v2). These
two projections are equal if the morphism is weakly
symmetrical (see Section 5.3).

Projections can also be performed with respect to
the edges (pairs of vertices in Ni), instead of pairs of
vertices in N1 ×N2:

De�nition 29. The .rst (resp. second) external pro-
jection of the edge morphism �� is de.ned by:

∀(u1; v1) ∈ N 2
1 ; ��

(1)
N1×N1

(u1; v1)

= sup
(u2 ; v2)∈N2×N2

��(u1; u2; v1; v2); (24)

(
resp: ∀(u2; v2) ∈ N 2

2 ; ��
(2)
N2×N2

(u2; v2)

= sup
(u1 ; v1)∈N1×N1

��(u1; u2; v1; v2)

)
: (25)

These projections have similar interpretations as the
projections of a vertex morphism, by replacing ver-
tices by edges.

Proposition 30. The vertex morphism n� which is
constant and equal to 1 is the null element of the
internal max–min composition. If the projections
of the vertex morphisms are normalized (i.e. there

exists a vertex such that the projection value for
this vertex is equal to 1); then the vertex mor-
phism n� which is constant and equal to 1 is the
null element of the external max–min composition.
On the subspace of GFM where all the internal
projections are normalized for each (w1; w2) (i.e.
∀(w1; w2)∈N1 ×N2; ∃(v1; v2)∈N1 ×N2; ��(v1; v2;
w1; w2) = 1); the edge morphism n� which is
constant and equal to 1 is the null element
of the internal max–min composition. On the
subspace of GFM where all the external pro-
jections are normalized for each (u2; w2) (i.e.
∀(u2; w2)∈N2 ×N2; ∃(v1; x1)∈N1 ×N1; ��(v1; u2; x1;
w2) = 1); the edge morphism n� which is constant
and equal to 1 is the null element of the external
max–min composition.

Proof. We just prove the property for the internal
composition of edge morphisms.

(�� • n�)(u1; u2; w1; w2)

= sup
(v1 ;v2)∈N1×N2

{n�(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)}
= sup

(v1 ;v2)∈N1×N2

��(v1; v2; w1; w2)

= ��
(2)
N1×N2

(w1; w2)

= 1

if the second internal projection of �� is normalized
for each (w1; w2) (i.e. ∀(w1; w2)∈N1 ×N2; ∃(v1; v2)∈
N1 ×N2; ��(v1; v2; w1; w2) = 1). In the same way,
n� • ��= 1 if the second internal projection of �� is
normalized for each (u2; w2).

Proposition 31. The vertex morphism u•� which is
constant and equal to 0 is the unit element of the in-
ternal max–min composition. The edge morphism u•�
de7ned by

u•�(u1; u2; v1; v2) =

{
1 if (u1; u2) = (v1; v2);

0 otherwise

is the unit element of the internal max–min compo-
sition.

Proof. We just prove the property for the internal
composition of edge morphisms. ∀(u1; u2; w1; w2)∈
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N1 ×N2 ×N1 ×N2:

(�� • u•�)(u1; u2; w1; w2)

= sup
(v1 ;v2)∈N1×N2

{u•�(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)}
= u•�(u1; u2; u1; u2) ∧ ��(u1; u2; w1; w2)

= ��(u1; u2; w1; w2):

Proposition 32. The FGM (u◦�; u
◦
�) which is de7ned

between G1 and G1 by

u◦�(u1; v1) =

{
1 if u1 = v1;

0 otherwise;

u◦�(u1; v1; u
′
1; v

′
1) =

{
1 if (u1; u′1) = (v1; v′1);
0 otherwise

is the unit element to the right of the external max–
min composition. The unit element to the left is de-
7ned similarly; but between G2 and G2.

Proof. For the external composition of vertex mor-
phisms. ∀(u1; u2; w1; w2)∈N1 ×N2 ×N1 ×N2:

(�� ◦ u◦�)(u1; u2) = sup
v1∈N1

{u◦�(u1; v1) ∧ ��(v1; u2)}

= u◦�(u1; u1) ∧ ��(u1; u2)
= ��(u1; u2):

The proof for the external composition of edge mor-
phism works identically.

4.5. Inverse graph morphism

De�nition 33. Let (��; ��) be a graph morphism be-
tween G1 and G2. We de.ne the inverse of (��; ��) by
(��; ��)−1 = (�−1

� ; �
−1
� ) (from G2 into G1):

∀(u1; u2) ∈ N1 × N2; �−1
� (u2; u1) = ��(u1; u2); (26)

∀(u1; u2; v1; v2) ∈ N1 × N2 × N1 × N2;

�−1
� (u2; u1; v2; v1) = ��(u1; u2; v1; v2):

(27)

This intuitive de.nition of inverse morphism
can be explained by expressing (��; ��)−1 ◦ (��; ��)
as a function of the .rst projection of (��; ��).

∀(u1; v1)∈N1 ×N1:

(�−1
� ◦ ��)(u1; v1) = sup

u2∈N2

{��(u1; u2) ∧ �−1
� (u2; v1)}

= sup
u2∈N2

{��(u1; u2) ∧ ��(v1; u2)}

6 ��
(1)
N1

(u1) ∧ ��(1)
N1

(v1):

In the particular case where u1 = v1 we have

(�−1
� ◦ ��)(u1; u1) = sup

u2∈N2

��(u1; u2) = ��
(1)
N1

(u1):

The function (�−1
� ◦ ��) is maximal at least at the pairs

(u1; u1). However nothing more can be said in the
general case.

In a similar way for the edge morphism we have
∀(u1; u′1; v1; v

′
1)∈N 4

1 ,

(�−1
� ◦ ��)(u1; u′1; v1; v′1)
= sup

(u2 ;v2)∈N2×N2

{��(u1; u2; v1; v2)

∧ �−1
� (u2; u′1; v2; v

′
1)}

= sup
(u2 ;v2)∈N2×N2

{��(u1; u2; v1; v2)

∧ ��(u′1; u2; v′1; v2)}
6 ��

(1)
N1×N1

(u1; v1) ∧ ��(1)
N1×N1

(u′1; v
′
1):

In the particular case where (u1; v1) = (u′1; v
′
1) we get

(�−1
� ◦ ��)(u1; u1; v1; v1)
= sup

(u2 ;v2)∈N2×N2

��(u1; u2; v1; v2)

= ��
(1)
N1×N1

(u1; v1):

It is consistent to recover the external projections since
this corresponds to the maximal degree of morphism
for a given vertex or edge with another element on
the other graph. Therefore, the value of the composed
morphism (��; ��)−1 ◦ (��; ��) of a vertex or an edge
with itself is necessarily at least equal to the other
values.

5. Properties and interpretations

In this section, we develop some more proper-
ties, in particular in relation to the internal max–min
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composition. Several ones are extensions of proper-
ties proved in [30].

5.1. Smallest vertex morphism and largest edge
morphism

Proposition 34. Let �� be a vertex morphism on
N1 ×N2. The largest edge morphism satisfying the
edge morphism condition with �� is

��(u1; u2; v1; v2) = ��(u1; u2) ∧ ��(v1; v2): (28)

Proof. Straightforward by imposing the equality in
Eq. (6).

Proposition 35. Let �� be an edge morphism on
N1 ×N2 ×N1 ×N2. The smallest vertex morphism
satisfying the morphism condition with �� is

��(u1; u2)

= sup
(v1 ;v2)∈N1×N2

{��(u1; u2; v1; v2)

∨ ��(v1; v2; u1; u2)}: (29)

Proof. First, it is easy to check that this morphism ��
satis.es Eq. (6). Now let us consider another vertex
morphism �� that also satis.es this condition. We have

��(u1; u2)¿ ��(u1; u2; v1; v2);

��(u1; u2)¿ ��(v1; v2; u1; u2)

and therefore (since the previous inequalities hold
∀(v1; v2) ∈ N1 × N2):

��(u1; u2)

¿ ��(u1; u2; v1; v2) ∨ ��(v1; v2; u1; u2)
¿ sup

(v1 ;v2)∈N1×N2

{��(u1; u2; v1; v2)

∨ ��(v1; v2; u1; u2)}
¿ ��(u1; u2):

This shows that any vertex morphism satisfying
Eq. (6) with respect to �� is greater than ��.

These two properties correspond to limit cases of
Eq. (6) in the de.nition of a fuzzy morphism between
graphs. These de.nitions allow one to construct an

edge morphism from the knowledge of a vertex mor-
phism and the converse. Therefore, the formalism de-
veloped here can be used in classical methods where
only the vertex morphism is used.

5.2. Re@exivity

De�nition 36. A graph morphism (��; ��) is reNexive
if �� is reNexive in the sense of fuzzy relations, i.e.

∀(u1; u2) ∈ N1 × N2;

��(u1; u2; u1; u2) = ��(u1; u2): (30)

This de.nition relies on the internal interpretation
of the edge morphism as a fuzzy relation on fuzzy
subsets, and therefore as a fuzzy graph as introduced
in [30].

ReNexive edge morphisms have interesting proper-
ties, that are extensions of fuzzy relations on fuzzy
sets [30].

Proposition 37. If �� is a re@exive edge morphism;
then we have: ∀(u1; u2; v1; v2)∈N1 ×N2 ×N1 ×N2;

��(u1; u2; v1; v2)6 ��(u1; u2; u1; u2)

and ��(v1; v2; u1; u2)6 ��(u1; u2; u1; u2): (31)

This property expresses that the morphism between
any two edges is bounded by the value of the mor-
phism between one of these edges and itself.

Proof. Straightforward from Eq. (6) and reNexivity.

Proposition 38. For any re@exive edge morphism
�� and any edge morphism ��; de7ned on the same
graphs and attached to the same vertex morphism
��; we have:

(�� • ��)¿ �� and (�� • ��)¿ ��: (32)

This property expresses an extensivity property
of the internal max–min composition, when an
edge morphism is composed with a reNexive edge
morphism.
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Proof. ∀(u1; u2; w1; w2)∈N1 ×N2 ×N1 ×N2,

(�� • ��)(u1; u2; w1; w2)

= sup
(v1 ;v2)∈N1×N2

{��(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)}
¿ ��(u1; u2; w1; w2) ∧ ��(w1; w2; w1; w2)

¿ ��(u1; u2; w1; w2) ∧ ��(w1; w2):

Since ��(u1; u2; w1; w2)6��(u1; u2)∧ ��(w1; w2), we
have

��(u1; u2; w1; w2) ∧ ��(w1; w2) = ��(u1; u2; w1; w2)

and therefore

(�� • ��)(u1; u2; w1; w2)¿ ��(u1; u2; w1; w2):

The second inequality of the proposition can be shown
in the same way.

Proposition 39. Any re@exive edge morphism ��
satis7es

�0
� 6 �� 6 �

2
� 6 · · ·6 �∞� ; (33)

where �∞� = limn→∞ ��n = supn∈N �
n
�.

Proof. It follows directly from the extensivity prop-
erty (see Eq. (32)).

Proposition 40. Any re@exive edge morphism �� sat-
is7es ∀(u1; u2)∈N1 ×N2;

�0
�(u1; u2; u1; u2) = ��(u1; u2; u1; u2)

= �2
�(u1; u2; u1; u2)

= · · · = �∞� (u1; u2; u1; u2)

= ��(u1; u2): (34)

Proof. For n= 0 and 1 the proposition holds by def-
inition. Let us assume that it holds for n, and let us
prove it for n+ 1. We have

�n�(u1; u2; u1; u2) = ��(u1; u2):

From Eq. (6) we have

��(v1; v2; u1; u2)6 ��(u1; u2):

Therefore,

sup
(v1 ;v2)∈N1×N2

{�n�(u1; u2; v1; v2) ∧ ��(v1; v2; u1; u2)}

6 �n�(u1; u2; u1; u2) ∧ ��(u1; u2; u1; u2)
6 ��(u1; u2) ∧ ��(u1; u2):

So we have

�n+1
� (u1; u2; u1; u2)6 ��(u1; u2)

and since �n+1
� ¿��, we also have

�n+1
� (u1; u2; u1; u2)¿ ��(u1; u2):

This proves the property for n+1, and the proposition
by recurrence.

Proposition 41. The internal composition �� • �� of
two re@exive edge morphisms �� and �� de7ned on
the same graphs and with the same vertex morphism
is re@exive.

This shows that internal composition preserves re-
Nexivity. It follows also that any power of a reNexive
morphism is reNexive.

Proof. ∀(u1; u2)∈N1 ×N2, we have

(�� • ��)(u1; u2; u1; u2)
= sup

(v1 ;v2)∈N1 ×N2

{��(u1; u2; v1; v2)

∧ ��(v1; v2; u1; u2)}
¿ ��(u1; u2; u1; u2) ∧ ��(u1; u2; u1; u2)
¿ ��(u1; u2) ∧ ��(u1; u2)
¿ ��(u1; u2):

On the other hand, since the result of internal compo-
sition is a fuzzy morphism and from Eq. (6), we also
have (�� • ��)(u1; u2; u1; u2)6��(u1; u2), which shows
the property.

5.3. Symmetries

Symmetry in graph morphisms only concern edge
morphisms. Indeed, for vertex morphisms de.ned on
N1 ×N2, symmetry does not make sense (except if
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Fig. 7. Symmetrical morphism in the sense of a fuzzy graph for a non-directed graph: ��(u1; u2; v1; v2) = ��(v1; v2; u1; u2).

Fig. 8. Non-symmetrical morphism in the sense of a fuzzy graph for a directed graph: ��(u1; u2; v1; v2) �= ��(v1; v2; u1; u2).

N1 =N2). We can de.ne two types of symmetry. The
.rst one is expressed as:

De�nition 42. A graph morphism (��; ��) is weakly
symmetrical if �� is symmetrical in the sense of
symmetry of a fuzzy relation, i.e. ∀(u1; u2; v1; v2)∈
N1×N2×N1×N2:

��(u1; u2; v1; v2) = ��(v1; v2; u1; u2): (35)

This de.nition of symmetry means that the matrix
representing �� on S×S is symmetrical. This amounts
to consider that the compatibilities between edge as-
sociations are not ordered. Here we consider that it is
equivalent to consider the vertex association (u1; u2)
and then the association (v1; v2), or to consider (v1; v2)
and then (u1; u2) (see Fig. 7). To di8erentiate between
both orders makes sense if the graph is directed. If
(u1; v1) and (u2; v2) are directed, then v1 is the succes-
sor of u1 and v2 is the successor of u2. If u1 and u2 are
associated, we consider the association of the succes-
sors in the graph by considering ��(u1; u2; v1; v2) (see
Fig. 8). A similar reasoning applies for the predeces-
sors.

Proposition 43. If �� and �� are two weakly sym-
metrical edge morphisms de7ned on the same graphs;
their internal composition is symmetrical if and only
if the composition commutes; i.e. �� •��= �� •��.

This property is weaker than the one we have for
reNexive morphisms. Here internal composition pre-
serves symmetry if and only if it commutes.

Proof. ∀(u1; u2; w1; w2)∈N1×N2×N1×N2, we have

(�� • ��)(u1; u2; w1; w2)

= sup
(v1 ;v2)∈N1×N2

{��(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)}
= sup

(v1 ;v2)∈N1×N2

{��(w1; w2; v1; v2)

∧��(v1; v2; u1; u2)}
= (�� • ��)(w1; w2; u1; u2):

This shows that (�� •��)(u1; u2; w1; w2) = (�� •��)(w1;
w2; u1; u2) i8 (�� •��)(w1; w2; u1; u2) = (�� •��)(w1;
w2; u1; u2), i.e. i8 the internal composition of �� and
�� commutes.

The second de.nition of symmetry we propose is
as follows:

De�nition 44. A graph morphism (��; ��) is strongly
symmetrical if ∀(u1; u2; v1; v2)∈N1×N2×N1×N2 we
have

��(u1; u2; v1; v2) = ��(u1; v2; v1; u2)

= ��(v1; u2; u1; v2): (36)
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Proposition 45. Strong symmetry implies weak
symmetry.

Proof. The proof is straightforward by exchanging
.rst the two vertices of N1, and then the two vertices
of N2.

Strong symmetry is quite constraining, since
Eq. (6) becomes ∀(u1; v1)∈N1×N1; ∀(u2; v2)∈N2

×N2:

��(u1; u2; v1; v2)6 ��(u1; u2) ∧ ��(v1; v2)
∧ ��(u1; v2) ∧ ��(v1; u2): (37)

This property does not seem interesting globally, but
rather locally.

De�nition 46. A graph morphism (��; ��) is locally
strongly symmetrical if ∃(u1; u2; v1; v2)∈N1×N2 ×
N1×N2 such that

��(u1; u2; v1; v2)6 ��(u1; u2) ∧ ��(v1; v2)
∧ ��(u1; v2) ∧ ��(v1; u2): (38)

5.4. Transitivity

De�nition 47. A graph morphism (��; ��) is transitive
if �� is transitive in the sense of fuzzy relations:

�� • �� 6 ��: (39)

This de.nition relies on the internal representation
and can be assimilated to an anti-extensivity property
of the internal composition. Moreover, this property
does not depend on the vertex morphism. A morphism
is transitive if there does not exist a path with a bet-
ter compatibility. It means that the morphism already
encodes all association compatibility relations. It fol-
lows that limn→∞ �n� is transitive. This de.nition also
implies directly that any power of �� is less than ��.

Proposition 48. A graph fuzzy morphism (��; ��)
that is both re@exive and transitive has a simple
idempotence property:

�� • �� = ��: (40)

It follows that any power of �� is equal to ��.

Proof. Straightforward since reNexivity implies
�� •��¿�� and transitivity implies �� •��6��.

Let us note that for the vertex morphisms, it always
holds that �� •��= ��.

Proposition 49. If an edge morphism �� is both
weakly symmetrical and transitive; then its values
are bounded:

∀(u1; u2; v1; v2) ∈ N1 × N2 × N1 × N2;

��(u1; u2; v1; v2)6 ��(u1; u2; u1; u2):
(41)

Note that this property is the same as the one for re-
Nexive morphisms.

Proof.

��(u1; u2; v1; v2)

6 sup
(w1 ;w2)∈N1×N2

{��(u1; u2; w1; w2)

∧ ��(u1; u2; w1; w2)}

6 sup
(w1 ;w2)∈N1×N2

{��(u1; u2; w1; w2)

∧ ��(w1; w2; u1; u2)}

6 (�� • ��)(u1; u2; u1; u2)

6 ��(u1; u2; u1; u2):

The values of a symmetrical and transitive mor-
phism are even more constrained, according to the fol-
lowing property.

Proposition 50. For any triplet of edges; the two
smallest values of the edge morphism (supposed to
be weakly symmetrical and transitive) computed on
pairs of edges in this triplet are necessarily equal.

Proof. Let us consider any three edges (u1; u2); (v1;
v2); (w1; w2). Let us assume for instance (without loss
of generality because of symmetry) that

��(u1; u2; w1; w2)6 ��(u1; u2; v1; v2)

6 ��(v1; v2; w1; w2):
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Since �� is transitive, we have

��(u1; u2; w1; w2)

¿ (�� • ��)(u1; u2; w1; w2)

¿ sup
(v′1 ;v

′
2)∈N1×N2

{��(u1; u2; v′1; v′2)

∧ ��(v′1; v′2; w1; w2)}
¿ ��(u1; u2; v1; v2) ∧ ��(v1; v2; w1; w2)

¿ ��(u1; u2; v1; v2);

since ��(u1; u2; v1; v2)6��(v1; v2; w1; w2). And there-
fore ��(u1; u2; w1; w2) = ��(u1; u2; v1; v2).

Proposition 51. If �� and �� are two transitive edge
morphisms on the same graphs and if their internal
composition commutes; then �� •�� is transitive.

The reverse is in general not true, and the transitiv-
ity of the composition is not suDcient to guarantee its
commutativity. This contrasts with the case of sym-
metric morphisms.

Proof. It follows directly from the fact that �� •��
commutes, from the associativity of the internal com-
position and from its increasingness.

Proposition 52. It �� is a transitive morphism; for
any two edge morphisms �� and �′� on the same graphs
satisfying ��6�� and �′�6��; we have

�� • �′� 6 ��: (42)

If �� is moreover re@exive; we have

�� • �� = �� • �� = ��: (43)

Proof. The .rst equation follows directly from the in-
creasingness of internal composition and from transi-
tivity of ��. The second one follows from the .rst one
and from the extensivity of the internal composition
if one morphism is reNexive.

5.5. �-Cuts of a fuzzy morphism

Cuts are useful in graph theory to extract a subgraph
satisfying some properties. On the other hand, the no-
tion of �-cuts is used in fuzzy set theory for several
purposes, including defuzzi.cation and decision mak-
ing. Therefore, we introduce the notion of �-cuts of a

fuzzy morphism. It is directly inspired by the notion
of �-cut of a fuzzy set [13,41] and of a fuzzy relation
[30].

De�nition 53. The �-cut of a fuzzy morphism
(��; ��), for �∈ [0; 1] is de7ned as the pair (��� ; ���),
where ��� is a crisp subset of pairs of vertices such that

��� = {(u1; u2) ∈ N1 × N2; ��(u1; u2)¿ �} (44)

and ��� is a crisp subset of pairs of edges such that

��� = {(u1; u2; v1; v2) ∈ N1 × N2 × N1 × N2;

��(u1; u2; v1; v2)¿ �}: (45)

This de.nition corresponds to a threshold on the
morphisms values, keeping only correspondences that
have degrees greater than �.

Proposition 54. We have the following stability and
preservation properties:
• ��� is a relation (in the classical sense) on ��� .
• Taking �-cuts of morphisms commutes with the
internal composition:

(�� • ��)� = ��� ∪ ��� ; (46)

(�� • ��)� = ��� • ��� : (47)

• If �� is re@exive; any �-cut of �� is re@exive.
• If �� is weakly symmetrical; any �-cut of �� is

symmetrical.
• If �� is transitive; any �-cut of �� is transitive.

Proof. If ��(u1; u2; v1; v2)¿�, we have

�6 ��(u1; u2; v1; v2)6 ��(u1; u2) ∧ ��(v1; v2)
and therefore ��(u1; u2)¿� and ��(v1; v2)¿�, which
shows the .rst property.

Let us now consider the �-cuts of the internal com-
position:

(�� • ��)(u1; u2; w1; w2)¿ �

⇔ sup
(v1 ;v2)∈N1×N2

{��(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)}¿ �
⇔ ∃(v1; v2) ∈ N1 × N2; ��(u1; u2; v1; v2)

∧ ��(v1; v2; w1; w2)¿ �
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⇔ ∃(v1; v2) ∈ N1 × N2; ��(u1; u2; v1; v2)¿ �

and ��(v1; v2; w1; w2)¿ �

⇔ (u1; u2; w1; w2) ∈ ��� • ��� :
The proof for the vertex morphisms is straightforward.

The proofs of the preservation of edge morphism
properties by taking �-cuts are also straightforward.

5.6. Fuzzy cluster

A fuzzy cluster generalizes to fuzzy graphs the usual
notion of clique and the notion of connected compo-
nents [30]. We adapt here its de.nition to the formal-
ism of edge morphism:

De�nition 55. The set C⊆N1×N2 is a fuzzy cluster
of order k on the weakly symmetrical edge morphism
��: N1×N2×N1×N2 if

inf
((u1 ;u2);(v1 ;v2))∈C2

�k�(u1; u2; v1; v2)

¿ sup
(w1 ;w2) =∈C

{
inf

(x1 ;x2)∈C
�k�(x1; x2; w1; w2)

}
: (48)

The membership degree of the cluster is de.ned as

��(C) = inf
((u1 ;u2);(v1 ;v2))∈C2

�k�(u1; u2; v1; v2): (49)

When k = 1, the cluster is the generalization of
the notion of clique, a maximal complete subgraph.
When k→∞ a cluster becomes a connected compo-
nent where each pair of vertices is joined by a path.

A fuzzy clique can be interpreted as a group of as-
sociations, the minimum compatibility degree in the
group being greater than all other compatibilities be-
tween an association in the group and an association
outside the group. This corresponds to the notion of a
strong association group.

Fuzzy cliques can be used in several situations. Let
us mention decision making: a classical method for
.nding the best associations in an association graph is
to search for maximal cliques [7]. The defuzzi.cation
of a graph morphism can then be obtained from the
fuzzy cliques of maximal order. Another idea is to
de.ne quality criteria of a morphism, as a function
of the number, the size, or the minimal degree of its
fuzzy cliques. This idea can be further developed for

optimizing a graph morphism, leading to the “best”
matching between two graphs.

6. Conclusion

We proposed in this paper a new formalism for
de.ning fuzzy morphisms between graphs (GFM). It
extends previous works on fuzzy relations and fuzzy
graphs. The main feature of the GFM is the use of
a pair of functions: one is a mapping between ver-
tices, the other is a mapping between edges. More-
over, these two functions are linked as the vertices and
the edges are linked in a graph. We have introduced
two complementary interpretations of GFM with the
internal and the external views. The conjunction of
these properties constitutes a link between the clas-
sical notion of association compatibility and the new
notion of edge morphism. The .rst use is the de.ni-
tion of several composition laws which have several
interesting properties. All these properties and others
have been interpreted in terms of graph matching and
association graphs.

Further work is twofold. Firstly, other properties are
worth investigating. Other composition laws can be
de.ned using, for instance, max-star combination, for
which di8erent properties can be expected. Particular
graphs can be considered (such as topological graphs
for instance), and de.nitions and properties can be
speci.ed for such graphs, in order to exploit more
deeply their particular structure. The notion of fuzzy
cluster should also be further exploited.

Secondly, based on this formalism, the use of GFM
for inexact graph matching can now be addressed. This
calls for three main steps: de.ning the quality of a
GFM, designing appropriate optimization techniques,
and designing a decision rule. The morphism itself is a
part of quality evaluation since it provides degrees of
correspondence between vertices and between edges.
But is not suDcient for this evaluation, and similarities
between vertex attributes and between edge attributes
should be combined with the degrees of correspon-
dence. Also the composition laws may be useful at this
step, as well as the order of maximal fuzzy cliques.
Concerning optimization techniques, a .rst step has
been proposed based on this GFM formalism, using
genetic algorithms [29] and estimation distribution al-
gorithms [3]. They will be further exploited in our
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future work, along with relaxation-based techniques.
Algorithmic complexity has to be addressed for large
size problems. Parallelizing optimization algorithms
could be foreseen. The decision rule is necessary in
cases where a crisp assignment is needed. The notions
of �-cuts of a morphism and of fuzzy cliques may be
useful at this level.
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