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Face reconstruction from images has been a core topic for the last decades, and is now involved in many
applications such as identity verification or human-computer interaction. The 3D Morphable Model
introduced by Blanz and Vetter has been widely used to this end, because its specific 3D modeling offers
robustness to pose variation and adaptability to the specificities of each face.

To overcome the limitations of methods using a single image, and since video has become more and
more affordable, we propose a new method which exploits video sequences to consolidate the 3D head
shape estimation using successive frames. Based on particle filtering, our algorithm updates the model
estimation at each instant and it is robust to noisy observations. A comparison with the Levenberg-
Marquardt global optimization approach on various sets of data shows visual improvements both on pose
and shape estimation. Biometric performances confirm this trend with a mean reduction of 10% in terms

Keywords:
3DMM

Particle filter
Shape estimation
Facial biometry

of False Rejection Rate.
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1. Introduction

The recent rise of biometric techniques stimulates their use to auto-
mate the process of people recognition in a wide variety of systems,
from computer locking devices to people authentication in airports.
For each application, a compromise has to be found between the rec-
ognition rate of the biometric system on the one hand, and its easiness
of use, cost and computation time on the other hand. The different
types of biometric identifiers used for human recognition (finger-
prints, iris, face, veins, etc.) have different requirements in terms of
acquisition and do not lead to the same recognition accuracy.

Among all of them, facial biometry offers the advantage of being
easily acquired without any contact with sensors, but suffers from
specific issues of acquisition conditions (illumination, pose, facial
expression). This is especially the case in video surveillance or in rec-
ognition systems designed to avoid behavior constraints in order to
simplify the process from the user point of view. As such systems
are not intrusive for users and due to the easiness of face acquisition,
specific work has focused on face reconstruction and comparison
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methods. Moreover, facial biometry is sometimes the only biometric
identifier available. To solve the different problems outlined above,
the field of face recognition has been an active research area for many
years, first on still images [30,9,5], then on video [23]. This extension
is particularly interesting since video-based systems become more
and more affordable, and have the advantage of increasing available
observations. When people move about in uncontrolled scenarios,
the information from a face observed under different poses in the se-
quence can be merged, and is then compared to a reference picture.
Among existing face recognition algorithms, a number of methods
are based on the comparison of frontal views (the reference view is
generally the frontal picture on ID documents). A frontal view there-
fore has to be generated from the acquisitions. This can be performed
via a 3D reconstruction of the face using the acquired images, from
which synthesized views at any pose can be derived. Given the spec-
ificity of the face reconstruction problem (as opposed to object recon-
struction without prior knowledge), model-based methods are
privileged as they limit the risk of aberrant reconstruction, achieving
a compromise between the information coming from the observa-
tions and the prior knowledge on the class of faces.

Most existing algorithms designed to estimate parameters of
such 3D models are based on a single image input and highly de-
pend on the quality of the observations [5,27]. Nevertheless, in or-
der to obtain more accurate results, it is interesting to use several
images to consolidate the reconstruction. In [2], the authors
proposed to fuse images based on stereovision. The use of video
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sequences has not been widely exploited, except for structure from
motion methods, where images are considered as an ensemble to
estimate the model parameters [10]. In [32], the authors extend
a single image based method to video sequences by fusing the esti-
mations obtained at each instant independently, without verifying
the model coherence. However, temporal constraints between
states estimated at successive instants are not integrated in the
process, which would improve results.

To propose a real-time working system, we have to exploit the
incoming video frames on the fly. To this end, we propose a new
method based on the update of a 3D head model by using a particle
filter framework, which extends the work in [13], and has, to our
knowledge, never been proposed. An important feature of the pro-
posed approach is that previous observations are implicitly taken
into account to estimate the model at the current instant. The
key of our algorithm is to integrate the unknown shape coefficients
in the particle state and to consider them as static parameters, un-
like the pose which varies over time. Besides an adaptation to real
data, we propose here an improved algorithm for face estimation,
robust to noisy or aberrant detections thanks to multiple hypothe-
ses handling, contrary to common gradient methods which opti-
mize a unique solution associated with a given set of observations.

In Section 2, we first present the chosen head model, before giv-
ing an overview of methods which estimate the associated param-
eters, both for single and multiple input images. In Section 3, we
detail how to adapt a particle filter method to handle static param-
eters for facial shape estimation in video sequences, and propose
some alternatives to improve this static parameter estimation.
Section 4 presents how the observations are exploited in the particle
filter and used to generate the frontal view. Section 5 details a meth-
od which is compared to our particle filter-based method in
Section 6. This alternative method is based on a Levenberg-
Marquardt optimization to estimate the pose and the shape.
Experiments are done on both synthetic and real data. They are first
analyzed on visual illustrations, to demonstrate the improvements
at the image level. Then, since our final goal is to improve facial rec-
ognition performances by improving the head reconstruction using
video sequences, an evaluation based on biometric performances is
also proposed, before concluding with the perspectives of our
method.

2. State of art: 3D face reconstruction

The method we propose for face reconstruction from video se-
quences relies on a head model which is described in this section.
We will then present the existing methods to estimate its
parameters.

2.1. 3D head reconstruction

As underlined previously, many facial biometric systems must
be able to work with unconstrained user behavior, which implies
handling non-frontal poses in the input images.

Since most recognition algorithms are based on the comparison
between frontal views, a frontal view has to be generated from the
acquisitions. This can be performed via a 3D reconstruction of the
face from which images at any pose can be derived.

There are many ways to reconstruct a 3D object from a set of
views. We can distinguish purely geometric approaches, which
can be applied to any object, from model-based methods, which
use some prior information on the object to reconstruct, and
are therefore specific to a class of objects. Among generic meth-
ods based on one or a set of views, the best known algorithms
are based on shape from shading [35], structure from motion
[35] or stereovision [6,18,4]. For the latter, an important

constraint is to perform point matching between images which
therefore need to be acquired under quite similar points of view.
Reconstruction algorithms can also exploit other devices like
3D-scans, depth sensors [36] or structured light projectors [34].
Here, we limit our approach to image-based methods.

There exist several solutions to reconstruct a 3D object from a
set of views, and we chose model-based methods to exploit prior
knowledge on the object, here the face. The contribution of the
prior is twofold: first, it can be used to initialize a solution corre-
sponding to a valid shape (for instance, a mean model), then, it pre-
vents the algorithm from delivering a solution which does not
belong to the face space.

2.2. 3D head model

We use a 3D deformable shape model constructed in a similar
way as the 3D Morphable Model (3DMM) introduced in [5]. This
model has been chosen for several reasons, the first being its 3D
modeling (by opposition to 2D), necessary when faces under any
pose are considered (2D models learned on frontal views indeed
cannot be used with non-frontal face inputs). Moreover, as the final
aim is to establish a comparison score between the frontal view of
the estimated face and its corresponding ID picture, it is necessary
to adapt the model so that it fits the observed identity as well as
possible. The 3DMM allows for this adjustment, as it describes
the deformations of a mean face on two levels:

o The shape space, characterized by a mean shape S and a set of
deformations {s;,i=1,...,M} computed by principal compo-
nent analysis over a database of aligned head scans. Each
instance of this model can then be written as:

S= K<§+itxisi> (1)
i=1

where {o;,i =1,...,M} are the weighting parameters which
characterize the similarity with the mean shape and « is a
scaling factor. The mean shape S is defined by a set of n,
3D vertices, and each vector s; corresponds to deformations
associated with this set of points. A mesh is then defined
from these vertices by adding facets to describe the entire
head surface.

e The texture, that associates a color with each vertex of the

mesh, is stored in a texture map (Fig. 1) independently of the
shape parameters.
Like the shape space, the texture space can be described by a set
of texture eigenvectors {t;,i=1,...,M’} and a mean texture
map T. Any instance of the model is then a linear combination
of these vectors, so that:

o

T=T+Y Bt )
i1

where M’ is the number of texture eigenvectors, and

{B;,i=1,...,M'} are the weighting parameters for the tex-

ture similar to {o;} in Eq. (1) for the shape.

A probability is associated with each shape parameter value, as
follows:

1Y)

<

p(u) ~e 3)

with g; the ith eigenvalue of the shape covariance matrix. A similar
probability can be written for the texture parameters.

In this article, the parameter estimation focuses on the geomet-
rical part of the model, and the texture is then estimated in a sec-
ond step. Some instances of the morphable shape model are given

1
2

-
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Fig. 1. Texture map examples (left and middle images). In this representation, each vertex of the shape model has a given 2D position (parametrized between 0 and 1) in the
texture map. There is a mapping between the full 3D model and the texture map registered in the 2D image (right image), which explains the deformations observed in the

texture images.

in Fig. 2 illustrating its variations depending on the parameter
values.

2.3. Reconstruction based on a single image

A first algorithm to estimate the shape and texture parameters
of the 3DMM was proposed in the seminal paper [5]. This algorithm
is based on the optimization of a similarity score between the in-
put image and a rendered view synthesized given the estimated
pose, shape and texture. In case of perfect fitting, the input image
and the rendered one should be exactly the same. The optimization
is performed using stochastic gradient descent, in order to speed
up the process and to avoid local minima.

In [26], the authors introduced a faster method, based on Anal-
ysis-by-Synthesis as previously mentioned. The difference image
(between the input image and the synthesized one) is expressed
as a function of different derivative terms with respect to the un-
known variables to estimate (pose, texture and shape parameters,
and illumination). Because this equation is linear when some of the
parameters are fixed, the proposed method first optimizes itera-
tively the rigid transformation, then the shape, the illumination,
and finally the texture parameters. Thus, dimensions are reduced

for each of these optimization steps, and most of them are linear
(when estimating one set of parameters, the others are fixed). Sim-
ilar results are obtained in [5], but with a computation time di-
vided by five.

In [27], the authors add features to the cost function in order to
expand the convexity domain around the optimum, and thus limit
the problem of local minima. Moreover, the estimation accuracy is
improved as the use of multiple features leads to a better fit be-
tween the model and the observations.

Nevertheless, even if the model fits the observations on a single
image well, the 3D fitting is not guaranteed. Actually, due to the
projection from the 3D world onto the image plane and the occlu-
sions of some parts of a face in an image, some information is miss-
ing and therefore the estimation might be erroneous. This is why
new algorithms based on multiple image fitting have been pro-
posed. We present them briefly in the next subsection.

2.4. Multiview and temporal head reconstruction
In [2], the fitting algorithm proposed in [27] was adapted to use

a set of images acquired simultaneously. Besides the estimation of
the pose and the model parameters, the authors also estimate the

Fig. 2. Some instances of the deformable shape model (all faces are synthesized at the same pose and scale, and with identical lighting conditions). On the first line, only the
first coefficient o is non-zero and varies from —1.0 to 2.0 (from left to right). On the other lines, the five first coefficients (o; to o5 in Eq. (1)) have been sampled between —2.0
and 2.0. We can notice that the global shape changes for each instance, and more specifically the mouth shape, the ear orientation or the width of the face.



C. Herold et al. / Computer Vision and Image Understanding 122 (2014) 182-201 185

camera calibration parameters. This method improves the results
of algorithms relying only on a single image, but as for previous
methods, noisy observations can lead to an inaccurate estimation.
When facing non-frontal poses, the extraction of features such as
points of interest (eye corners, ears, etc.) might be difficult. More-
over, when using gradient based optimization methods, the final
estimation highly depends on the initialization: if the starting
point is too far from the real value, the solution can be stuck in a
local minimum.

To fit a head model to a face seen in a video sequence, some
methods simply apply an additional selection step over all avail-
able images to extract the best one according to some criteria.
One of the fitting methods introduced previously can then be ap-
plied on the single chosen image [7]. In [32], two experiments were
proposed; the first one consists in estimating the parameters using
each frame independently before making a fusion by a linear com-
bination of these estimations. The second one uses all input images
together to optimize parameters, leading to a single estimation
based on the whole sequence.

The advantage of using stereovision or video sequences is that
it guarantees a better 3D estimation as the model is fitted on
observations under various poses. Moreover, there is more robust-
ness to outliers or noisy detections, because one point being badly
detected on one image may be correctly detected on other ones. If
the feature points used for the reconstruction are well detected in
most of the images, the estimation will lead to a fitting towards
the good detections. Moreover, using stereovision or video se-
quences allows consolidating the estimation between views under
various poses. Nevertheless, no specific method has been pro-
posed to sequentially update the model using a video sequence.
Indeed, stereovision is often based on images acquired simulta-
neously by a set of cameras, and the video-based method pro-
posed in [32] is applied offline. We present here a new video-
based approach, using sequences acquired from a set of calibrated
cameras. Unlike the previous methods, we propose updating the
parameter estimation online, with each new incoming observa-
tion. Thus, at each instant, we obtain an estimation built on all
previous views, which can be exploited before the end of the
acquisition.

3. Static shape parameter estimation by particle filtering.

In this paper, our goal is to estimate the parameters of the shape
model introduced in Section 2.2. The methods which have been
presented previously iteratively update an initial estimate, and
the output is a unique instance of the morphable model. Unlike
these types of algorithms, we propose here representing the previ-
ous estimation as a density, which characterizes the probability of
realization over the whole shape space. This allows us to cope with
the inherent nature of noisy data and to maintain multiple hypoth-
eses during the estimation process, that are reinforced or elimi-
nated with new frames.

We rely on the Gaussian assumption made in [5] to define the
prior distribution of the model shape parameters. This initial den-
sity is then updated each time new information is available. Given
a new frame (or a set of frames when multiple views are available),
our goal is to update the previous distribution characterizing the
prior constraint and the past observations by taking the current
ones into account. This can be done using a Bayesian approach,
which allows a compromise between the parameter validity and
the correlation with the observations.

Several declinations of the Bayesian theory for sequential
updating can be cited here, such as the Kalman filter [16], the ex-
tended Kalman filter [28], the Unscented Kalman [15] and the par-
ticle filter [8]. Due to the non-linearity of the involved functions

(perspective projections, projection of a 3D object leading to partial
occlusions) and the multi-modal distributions we handle, we
choose to work with particle filters. As developed in Section 4.1,
the particle filter offers a structure that maintains multiple hypoth-
eses over time, which is useful when feature extraction is difficult
and leads to outliers.

3.1. Particle filter

In this work, we use a particle filter to jointly estimate the pose
and the facial shape parameters over a video sequence. In the
experiments, the camera extrinsic and intrinsic parameters are
known, and not subject to the estimation. We first describe how
to estimate dynamical states (position, pose, etc.) and then discuss
how to integrate and estimate static parameters in the filter.

The particle filter algorithm [3,8] aims at filtering a hidden state
x by representing it as a density updated at each instant t given the
observations y,. At each time t, the hidden state x; can be derived
from the previous state x; ; given an evolution equation:

Xe = g(xi1) + H “)

with g a (possibly non-linear) function characterizing the system
dynamics, and g, the associated noise. The observations at time t
are derived from the corresponding state x; according to the follow-
ing equation:

Ve =hx) +n, ()

with h the (possibly non-linear) observation function and #, the
noise associated with the observations. The set of observations from
instant 1 to ¢ is denoted by y, .

The goal is to estimate at each time t the filtering density

p(%[y;,) by a set of N elements x{’ called particles representing
possible states at time t. Each particle x([i) is associated with a nor-

malized weight w” which characterizes its likelihood. The density
is approximated using the Monte-Carlo method given the set of N

particles P = {(xﬁ").,wﬁ")), i= 1,...7N}:

N -
Plelyr) =Y _wi'o0 (%)
i=1

where o0 (%) =1 if x, = xﬁ“, 0 elsewhere. . )

Given the initial particle distribution {(xY,w( =1/N), i=
1,...,N}, the following steps will be repeated to estimate the a
posteriori density at each instant:

« Prediction: each particle x\”, moves from time ¢t — 1 to time t
given the probability p(x¢|x._;) associated with the system
dynamics (Eq. (4)).

o Correction: each weight w{" is then updated according to the
particle likelihood given the current observations p(y,|x\"):

w o w? p(y,|x). (6)

This likelihood score defines how probable the state repre-
sented by each particle is, taking current observations and
model knowledge into account.
o Finally, a resampling is performed if the particle weights are
too scattered. This is characterized by the Effective Sample Size
H 1
(ESS) approximated by W

3.2. Static parameter estimation by particle filter

Let us now consider the case of filtering with unknown static
parameters. This is especially useful when some parameters of
the object to track are unknown, and when their values impact
the evolution and observation functions. For instance, if we
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consider the size of the object as a parameter, it is clear that it will
influence the observation function, as, the bigger it is, the larger its
projection in the image for a given pose. To simplify the notations,
we consider the concatenation of all unknown parameters in a vec-
tor 0 (here, the shape parameters ¢; and the scale factor k). As pre-
viously mentioned, the aim is to estimate sequentially the dynamic
state x; (the pose) given the observations (y,..). However, we now
take into account the unknown parameters in the evolution and
observation equations. The parameter 6 is a characteristic of the
object and is supposed to be constant over time, but as it is un-
known, it has to be estimated. We propose updating this estima-
tion along the sequence, and we note 0, the current estimation at
time t. With these notations, the previous system can be rewritten
as follows:

Xe = &Xe-1,0c-1, 1) = &g, (Ke-1, 1) (73)
Ve = h(xe, 0c,1,) = ho.(xe,1,) (7b)

The functions g and h now depend on 0, meaning that the hidden
state evolution depends on the parameter values, as do the observa-
tions given a state. In addition to the state estimation, a second task
is to determine the static parameter vector 0.

In [17], the authors reviewed existing methods to deal with un-
known parameters in particle filter algorithms. We do not hereby
consider offline methods, which handle a set of observations and
optimize the unknown static parameters and the poses globally.
Instead, we focus on online methods which update the pose and
parameter estimation recursively given the incoming observations.
Thus, we can have the best estimation available at each instant,
since it is computed from the previous estimations updated with
the current observations. If the last computed estimation is good
enough (for instance if it fits well with the observations), there is
no need to continue the process. Otherwise, the last estimation is
used for further improvement using new frames.

Let p(0) be the prior distribution of the unknown static param-
eters. Our algorithm aims at estimating iteratively the vector 0},
corresponding to the shape estimation at time t, and the associated
pose x;. The probability of 0, at time t given the observations can be
obtained by integrating over all possible values of the hidden state
X1.t:

P(0yse) = / P(X1c, Oy, X (8)

where X is the hidden dynamic state space. To estimate the value of
0 iteratively, this static parameter can be integrated into the hidden
state, thus increasing the size of the particle state [29,22]. The joint
density p(0;,x1.4|y;,) can then be evaluated using Monte-Carlo
methods.

Recall that x € X is the dynamic state of dimension n,, and
0 € © the vector of static parameters of dimension n,. The com-
plete vector to estimate is then {x,0} € X x ©, with dimension
n, + ny. Each particle will then be represented by a dynamic state
part x” and a static state part 0.

The integration of static parameters into the hidden state re-
quires the application of an artificial move on the particle static
part in order to explore the associated space. By definition, since
the parameters are static, the dynamic function which determines
their evolution in time is the identity function. In this case, the
parameters do not change, and the only values tested over the se-
quence are the ones sampled at the particle initialization step, as
they are not modified afterward. After some resampling steps, a
few or even only one values will still be represented, and this
impoverishment leads to a wrong estimation of the parameter val-
ues. A workaround to this issue is to apply an artificial move on the
static parameters from frame to frame. Different types of moves

which are listed below have already been proposed. We also pro-
pose two variants that improve the estimation process.

Gaussian noise. A first method consists in considering the static
parameters as dynamic ones, as in [22]. Therefore, at each time ¢, a
Gaussian noise is added to the perturbation, which can be consid-
ered as an artificial evolution:

Brir = 0 + 001 (9a)
g1 ~ N(O,W) (9b)

with W a covariance matrix characterizing the noise to add. Thanks
to this step, diversification is introduced for the static part of the
particle filter, and other states, than the ones initially sampled,
can be evaluated.

Adaptive Gaussian noise depending on particle weight. With the
previous move based on Gaussian noise addition, there is a loss
of precision after the alteration, since good particles can be moved
far away from their initial good position. To limit this effect, we
propose making the covariance matrix W dependent on each par-
ticle weight w(". If the weight is high (meaning that the particle
is in agreement with the observations), we use a covariance matrix
with small values to make a local exploration of the space. Con-
versely, if the weight is low, a noise with a higher covariance will
be applied to the static parameters in order to move the particle in
other subspaces.

Resample-move algorithm. In [11], each move applied on the sta-
tic state is generated by a MCMC step (Monte Carlo Markov Chain).
With this method, the new static states which are only generated
are accepted under some likelihood conditions. This idea, called
Resample-Move algorithm, has been introduced in [12]. The method
works as follows: at each time t, a MCMC move is applied to each
particle. This move is generated by a kernel K;(x},, ¢'|x.¢, §) having
p(x1.,0ly1,) as invariant distribution. The move can be limited to
the static state 6, and can be obtained by the Metropolis—-Hastings
algorithm, computed in two steps:

e sample a new candidate for the static parameter: 6' ~ p(6¢|9),

e sample v ~ Uy, a random sample from the uniform distribu-
tion between 0 and 1. If

p(yl:t‘xl:tv 9l)>

' p(yl:t|xl:t7 9)

the move from 0 to ¢ is accepted. Otherwise, 0 is kept.

v < min (l (10)

By directly applying this formula, the computational cost is in-
creased at each timestep, as more frames have to be considered for
the likelihood computation. Indeed, as the static parameters are
modified between frames, all likelihood values with respect to pre-
vious observations need to be recomputed. To limit this effect, we
introduce a period AT, which defines the number of frames to be
taken into account for the MCMC validation. The move is then ac-
cepted if:

v < min <1 p(ythT:t|xf*AT1[7 g )) (11)

" DVe_areXe-are, 0)

with AT = 0 if only the current observations are used.
For each particle, the sampling step

0 ~ p(0" ) (12)

allows for a local diversification of the static parameters only. Like
systematic Gaussian noise addition, we propose to evaluate another
sampling step, based on the prior distribution of the static parame-
ters, and independently of the particle current shape parameters
0?). Thus, new subspaces can be explored and moves are allowed
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anywhere, as long as the acceptance condition in Eq. (10) is satis-
fied. With this method, it becomes possible to get a particle out of
a local maximum. Nevertheless, if the space dimension is too high
with very few areas with high likelihood, the probability to accept
a move will be very low.

3.3. Application to head shape parameter estimation

Particle filters that include unknown static parameters have
been detailed from a theoretical point of view this past decade
but very few applications have been proposed in the field of image
processing. One use of such methods was nevertheless given in
[22], where the authors evaluated dimensions of simple geometri-
cal objects in video sequences, by considering these values as un-
known static parameters. The relation between the unknown
dimensions and the observations remains simple, and there is no
correlation between the different static values.

In this paper, we want to estimate the unknown parameters
of a more complex model, namely the shape coefficients «; and
the scale x (Eq. (1)) of the shape model presented in Section 2.2.
Let us underline that the observations are highly dependent on
the shape parameters, and this relation will be exploited to esti-
mate them using the available observations. Pose and shape
parameters must be estimated jointly, otherwise a pose error will
be compensated by a parameter error and conversely. As illus-
trated in Fig. 2, due to the construction of our shape model, each
parameter o; in Eq. (1) modifies the whole face because each
associated deformation eigenvector impacts all vertices. The pro-
cess leading from the shape parameters to the observed image is
as follows:

1. model deformation given (o4, ...,0) and the scale k,
2. rotation and translation in the 3D world reference,
3. projection onto the image plane.

The dependence on 0 needs therefore to be considered when
using the observation function, due to the shape parameter impact
on the 3D position of each point. The global system to consider is
the following:

(13a)
(13b)

Xe = &(Xe-1, )
Ve = h(xf7 0, ]7[) = hg(X[, ’/’t)

For our study, instead of applying the usual prediction process
of the particle filter (Eq. (13a)), we favor the use of feature points
detected in the current frame to initialize the pose. Indeed, to han-
dle low framerates, a very high number of particles would be nec-
essary to cover the space of all possible poses, and only a few of
them would be relevant. To avoid this step, we compute the parti-
cle poses directly given the current feature point detections. To this
end, an initial pose x? is estimated by fitting the mean model using
the method presented in [31]. This algorithm computes the trans-
lation, the rotation and the scale which minimize the least mean
square error between two sets of 3D feature points. This is done
by computing the Singular Value Decomposition (SVD) of the
covariance matrix of these two sets of points, which is then used
to determine the pose x°. A pose xgi) is then sampled around x?
for each particle, using a Gaussian noise (Eq. (14)).

Algorithm 1 presents the particle filter with two exclusive pos-
sibilities of move applied to the static parameters. In the case of
Gaussian sampling, a move is automatically applied to each un-
known parameter. When using MCMC, the move is applied condi-
tionally to the gain in terms of likelihood between the previous and
the new sampled states (Eq. (10)).

Algorithm 1. Static shape parameter estimation with a particle
filter

Sample the shape parameters 0 from a prior Gaussian
distribution to initialize the set of particles
{9§}>,wg> —1/N), i:l,...,N}

Define the move to apply: Move = Gaussian_Sampling or
MCMC

for t =1 — Npgpes do
Input: 2D feature point positions (possibly noisy).
Mean shape model fitting to estimate the initial pose x?
using the method by [31].
fori=1—- Ndo

- Sample around the estimated pose:

x =x0 4+ n,, with n, ~N(0,Z). (14)

if (Move = Gaussian_Sampling) then
Sample around the previous shape parameters:

()ﬁ” = ()E'}l + ny, with ng ~ N(O,ﬁ).
end if
- Update the weight with the likelihood
p(yt|x§i>, 0?’) : ng) o wgijlp(yt|x§i), 0@), as in Eq. (6), but
taking the parameter values into account.
end for
Resampling
if (Move = MCMC) then
fori=1— Ndo
Apply a MCMC move
end for
end if
end for

4. 3D face reconstruction in videos

In our application, each particle state is decomposed into a dy-
namic part (the pose x;) and a static part (the scale k¥ and shape
parameters «;, such that 6; = {k, o4, ...,y }) and must be updated
and evaluated with the incoming observations. In this part, we de-
tail how we use the images for these steps, and introduce a new
way to handle noisy observations based on the particle filter struc-
ture. Then, we present the texture extraction process once the
shape evaluation is done.

4.1. Multi-hypotheses feature point detections

At each time t, the particle weights are updated by computing
the likelihood of their states with the current images. This can be
done with commonly used criteria, such as edge or silhouette
scores [22], which compare the edges in the input images and
the ones of the projected object, or feature point projection, to ver-
ify their proximity to the detections [25]. These feature points are
also used to initialize the pose as shown in Algorithm 1, by fitting
the mean model on these points. As we have to handle non-frontal
views, noisy or outlier detections can happen, which impact this
initial pose estimation. If this pose is wrong, all particles will be
badly initialized (Eq. (14)), and further shape estimation and pose
improvement will then not be possible. In this part, we focus on
the first pose estimation performed at each instant, and propose
to exploit the multi-hypotheses structure of the particle filter to
improve this step.
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Different types of detectors can be learned to detect specific fea-
ture points of the face, using approaches such as AdaBoost, Real-
Boost and SVM-learning or Bayesian networks, which are
detailed in [33]. Unfortunately, when faces vary depending on pose
and acquisition conditions in the videos, it is a challenge to per-
fectly detect all facial feature points of a face. Depending on the vi-
deo properties, some points can be missing, while others can be
badly detected, as shown in Fig. 3. It is therefore important to take
this uncertainty into account in order to handle outliers obtained
with the feature point detectors.

In Algorithm 1, the pose for each particle is computed by adding
some noise to the pose estimated from the set of detected feature
points. Instead of using the same noisy pose version for all parti-
cles, we propose to exploit the property of multiple hypotheses
representation of the particle filter by assigning different poses
to particles, which are computed from different sets of feature
points. Thus, we capitalize on the multi-hypothesis aspect of the
particle filter to manage the outliers obtained with the feature
point detectors, since some of the computed poses will be close
to the correct one even if bad detections have been found (as all
points are not necessarily used for this pose computation). More
precisely, given a new frame, the pose of each particle is then com-
puted as follows:

1. Select a set of valid points common to all particles:

(a) For each feature point detected in all views of a given time-
stamp, compute its 3D coordinates and consider it as valid if
the geometric reconstruction error considering the camera
calibration parameters is below a given threshold o.. The
outcome of this first step is a set of 3D feature points of
the face.

(b) Compute the pose parameters by fitting the mean 3D model
on these reconstructed 3D points. This is done following the
method in [31], combined with a RANSAC procedure to
eliminate wrong feature points. The aim of this step is to
find the 3D pose minimizing the distance between the 3D

. .
Fig. 3. Left ear detections. In green: detection confidence above a threshold ., - in
red: detection confidence below ... The value of ., has been chosen such that
the probability to have a good detection at this threshold is p = 0.5. As the detector
is not perfect, bad detections can be associated with high detection scores, and

conversely. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

points selected at step (a) and the corresponding points in
the 3D model. This distance is called geometric reconstruc-
tion error.

2. For each particle:

(a) For each feature point not used previously, sample it given a
probability p® related to its detection confidence, and recon-
struct the 3D point with the selected detections. Here again,
the 3D point is kept only if the geometric reconstruction
error is below a threshold o..

(b) Compute the pose parameters by fitting the deformed
model (given the particle shape parameters) to the valid
3D points which have been reconstructed. No RANSAC algo-
rithm is used at this step, as we want to see whether a pose
is in accordance with the selected feature points.

The distribution p® can be learned for each detector D given its
outputs over an annotated database. To estimate it, we construct
a histogram for each detector over the interval of its
responses, characterizing the rate: (Number of good detections/
Number of detections) for each bin. These histograms are then
approximated by a density function in the form of a sigmoid
function, characterizing the detector performances. Fig. 4 shows
this rate given the detector output (horizontal axis) and the esti-
mated sigmoid which has been fitted on these data. We can note
that the curves differ from one detector to another, due to their
different discriminative power (left eye and right eyebrow cor-
ner). A detection o associated with a confidence c is then kept
if pP(c) > u,u~U[0,1], where u is sampled for each particle.
Fig. 5 shows the points selected with this sampling method for
a set of 10 particles.

The advantage of this method is twofold. First, unlike the pose
sampling proposed in Eq. (14) of Algorithm 1, no noise is added
to an initial pose estimated with the mean model. Here, each par-
ticle pose is optimized following the method in [31] using its own
shape parameters and the observations.

Secondly, instead of using the same set of feature points for all
particles based on a binary decision with respect to its confidence
and a fixed threshold, this method adds diversity to the sets of
points. Good points having an average confidence may still be se-
lected for some particles, and conversely, noisy detections or out-
liers with good confidence may also be rejected. For instance, in
Fig. 5, we can see that the confidence of the right ear detection is
not high enough to pass above the previously fixed threshold. Nev-
ertheless, it is sampled for some particles, and is then used to esti-
mate the pose. Other criteria, like edge comparison, will then

egebrown_curner
eye m—

0.8

0.6 |

error

0.4

0 11
score

Fig. 4. Comparison of sigmoids fitted to the histograms representing the rate
B recions for two detectors. As semantic definitions of different feature points
are not the same, their discriminating power is different, which explains the

difference in terms of detection quality.
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Fig. 5. Left image: initial detections. The red crosses (resp. the green circles) are detections with a confidence below 0.5 (resp. above 0.5). Right images: point sampling for ten
particles. The orange crosses (resp. blue circles) are points which are rejected (resp. kept) for the current particle. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

differentiate the good particles from the bad ones, and assign high-
er weights to particles that selected the best set of feature points.
Algorithm 2 summarizes the global workflow of this algorithm,
taking the feature point sampling into account, unlike Algorithm
1. Only the systematic noise addition has been kept for the static
parameter moves in this version.

Algorithm 2. Static shape parameter estimation with a particle
filter and feature points management

Sample the shape parameters 0 from a prior Gaussian
distribution to initialize the set of particles

{(9§>,wg> :1/1\1), i:1,...,N}

for t =1 — Njgmes do
Input: noisy 2D feature point positions.
fori=1— Ndo

- Sample around the previous shape parameters:
0% = 0, + ng, with ny ~ N(0, ).

- Sample a subset of feature points given their
confidence and fit the pose of the current shape model
using the method by [31].

- Update the weight with the likelihood p(yt|x§i>, 0@):
wi o wp(yel”, 0").
end for
Resampling
end for

4.2. Texture extraction and frontal view generation

For each frame and each camera, a texture map is extracted
from the corresponding image to get color information on the face.
For each pixel, a score is associated with this color, in order to de-
fine its quality. As the texture of the face is best viewed in a frontal
view with respect to the camera optical axis, the quality is defined
using a criterion expressing how frontal each facet of the model
mesh is. Thus, for each pixel (x,y) in the texture map which is vis-
ible in the input image, its quality qual(x,y) is computed as:

qual(x,y) = |fifxy) - Z| (15)

where iy is the normal to the face represented at pixel (x,y) and Z
the direction vector of the camera optical axis.

To obtain the most complete texture map, an intermediate step
of texture map fusion has to be performed. We use a linear combi-
nation of the texture maps TM; extracted from different views v
(v=1,...,V) at time t and weighted by the criterion presented
above. Each pixel TM(x,y) of the resulting texture map is computed

from the corresponding pixels in the extracted texture maps TM,
as follows:

14
M(x,y) = > qual,(x,y)TM,(x,y) (16)

v=1

Finally, a frontal view is generated using the shape deforma-
tions and the texture map that have been computed from the video
sequence. This global workflow is illustrated in Fig. 6.

5. Alternative algorithm: global optimization by Levenberg-
Marquardt

To evaluate the proposed particle filter, we compare it to an
optimization method based on the Levenberg-Marquardt (LM)
algorithm [24]. This method attempts to iteratively minimize an
error defined with criteria similar to those used in the particle fil-
ter, by mixing gradient descent and Gauss-Newton algorithms.
Unlike the particle filter method, this method is global, meaning
that it estimates jointly the poses for all frames and the shape
parameters (the same for the whole sequence). We use the levmar
library available online to this end [20].

Lety,r = (¥4,---,Yr) be the set of observations available in the
video sequence, such as feature point positions, gradients, silhou-
ettes, and u = (x1, ..., Xr, 0) the vector containing the unknown val-
ues, which are the poses and shape parameters. We apply a global
optimization using all observations together. The feature points y
corresponding to the estimated poses and deformations © can be
projected in order to compare them to the feature point detections,
corresponding to the observations y. The idea of the algorithm is
then to minimize the error |y — y||?, considering the following
energy:

2

T D(t)
1
Epoi ——E— E Xproi (D, £, X¢, 0) — X t 17
points 2 D(D) 2 pruJ(Pk t,0) det (D ) (17)

y y

where t is the frame index, D(t) is the number of detected feature
points at time t,p the index of these feature points, Xq(p,t) their
2D positions and x,;(p, t,X¢, 0) the projection of the corresponding
points from the model in the images given the current estimation of
pose X; and shape 0. Let x,4 be the 2D homogeneous coordinates of
the projection; the value X,n;(p, t,X:, 0) is computed as follows:

M
X =A (RHC (S(p) + Z%&(P)) + Tf)
p

Xproj (D, £, X¢, 0) = (Zﬁg Z:ED (2D-coordinates after normalization)
(18)

with T; = (x,¥;,z:) the translation and R; the rotation matrix
derived from the pose X; at time t,x and {o,i=1,...,M},
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Fig. 6. Pose and shape estimation, texture map extraction, fusion and frontal view generation.

respectively the scale and the deformation values, and A the 3 x 3
projection matrix given the intrinsic camera parameters, which
are supposed to be known in our experiments.

In addition to the retroprojection criterion, other criteria are
used, as the ones introduced in [25]. In our case, the error then de-
pends on the feature point projection term, an internal edge term, a
silhouette term and a validity term for the shape parameters. The
associated energy is a linear combination of those terms, with
weights 7., 7, and 7],,,,4, Which need to be empirically determined.
Except for the shape validity term (Eqe), all terms are computed
for every frame. The function to minimize is then:

1 b

1 T
E@(m

1 - 2 2
20 (Mede(t. X6, 07 + n.ds(£.X,,0)°)
t=1

+ nmodelEdeel (19)

)
prroj(pv taXh 0) - Xclet(p7 t)|2>

=1

with d; and ds two distances characterizing the error between the
model and the observations for the internal edges and the silhou-
ette criteria respectively, and the last term corresponding to the
realism of the face (like the associated probability proposed in Eq.
(3) or a regularity criterion for the deformed mesh).

The Levenberg-Marquardt algorithm needs an initial value u,
for the unknown poses and shape parameters. The deformation
parameters are set to zero (mean model), the scale ko to a mean
value calculated over a database and the poses are estimated using
the method in [31] combined with RANSAC. The Levenberg-Mar-
quardt algorithm uses the Jacobian of E, with respect to the un-
known variables, to optimize the output state u. If we only use
the feature points and the prior criteria, an analytical expression
can be computed (Appendix A). If other criteria are included, a
closed form solution is no longer available, and the Jacobian must
be evaluated by finite differences, which increases computing time.

6. Evaluation

In this section, we will start by validating the proposed algo-
rithm on a database of synthetic sequences for which the ground
truth is available in terms of pose and shape parameters. After that,
we will present the results of our method on real databases, both
on visual aspects and biometric performances, which is the final
purpose of the 3D face reconstruction in our case. Comparative re-
sults with the LM approach are presented in this second part, and
show the interest of our approach.

6.1. Convergence results on synthetic data

6.1.1. Data generation and evaluation
To evaluate the different versions of the particle filter presented
in Section 3.2 (systematic noise addition possibly parametrized by

the weight, and MCMC with local or global sampling), we first give
some convergence results on synthetic data (examples are given in
Fig. 7), for which the ground truth values for the pose and the
shape parameters are known.

The test faces are generated with two shape parameters sam-
pled from the normal distribution, the pose during the sequence
is similar to the one in real sequences, and the images are obtained
with the same calibration parameters as the four cameras acquisi-
tion system which will be detailed in Section 6.2.

We tested the different particle filter methods on noisy data
(o = 2 pixels for the feature point inputs), to simulate detector an-
swers on real data. To illustrate the impact of the chosen standard
deviation, we compare it to the distribution of the feature point
positions given the morphable model and represent it in Fig. 8.
The distances between the eyes are 80 pixels in this figure, which
can be compared to the corresponding distance in the input
images, which ranges between 70 and 100 pixels. The standard
deviations for each feature point are represented in Table 1, and
are also given relatively to a distance of 80 pixels between the eyes.
This feature point information leads to an approximate pose ini-
tialization and to a score function disturbed by the addition of
Gaussian noise.

6.1.2. Parameter convergence

With known dynamic state. In a first experiment, we check the
convergence of the particle static states towards the correct shape
parameters when the head pose is known. In this case, the only un-
known variables are the two static shape parameters, and we use
therefore only 100 particles. The best particle at each instant (red
cross), the filter mean (dashed light blue line) and variance (dotted
dark blue line) are plotted for one sequence in Fig. 9. They can be

b, O = = (= ="
g Voo O 7
— D 20N
)

Fig. 7. Observations (internal edges and silhouettes) for a given camera at three
instants of the sequence.
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Fig. 8. Feature point distribution given the shape model seen frontally. In the right corner at the bottom, a 2 pixel radius circle is represented, corresponding to the standard
deviation of the Gaussian noise applied to the positions. The distances between eyes on these two images are around 80 pixels, which is represented by the green line on the
bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
X- and Y-standard deviations (in pixels) for the feature points represented in Fig. 8.
The corresponding distance between the eyes is 80 pixels.

Feature point 2% ay
Left corner - left eyebrow 33 3.5
Right corner - left eyebrow 15 2.8
Left corner - left eye 2.2 3.1
Center of the left eye 1.8 2.8
Right corner - left eye 13 2.8
Top of the nose 0.8-103 2.0
Bottom of the nose 05.103 25
Tip of the nose 0.6-103 1.9
Left bottom of the ear 59 9.0
Left mouth corner 2.2 4.2
Bottom of the mouth 05.103 4.9
Chin 06-103 6.8

compared to the ground truth values plotted with a solid green line
(GT). We observe that the mean of the filter converges towards the
real parameters, and that the variance decreases at the beginning

of the sequence before stabilizing. In this example, even if few par-
ticles are sampled around the true first parameter at the initializa-
tion step, the whole set of particles moves towards this value over
the sequence.

With unknown dynamic state. To simulate real data issues, in
which the pose is not known, we now integrate the hidden dy-
namic state x; in the estimation process. Besides the two unknown
shape parameters already estimated before, there are now six
more time-varying unknown variables, corresponding to the 3D
position of the head and the 3 rotation angles. This explains why
we use N = 2500 particles in this experiment, still conducted on
synthetic data, instead of N = 100 in the previous one. The pose
x of each particle is therefore generated as explained in Algorithm
1.

Robustness to the pose error. We initially evaluate the algo-
rithm robustness to an initial pose error. To this end, we launch
the algorithm using various input poses as initial pose estimation
x? in Eq. (14) for each time t: first the true pose, before adding var-
ious yaw angle errors (2, 4, 6, 8 and 10 degrees) to it. Particle poses
are then sampled around this modified pose input. Fig. 10
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Fig. 9. Evolution of the filter static shape parameters when the pose is known. The curves Coefl and Coef2 represent the particle distribution for «; and o, (Eq. (1)), the two
unknown shape parameters to be estimated in this experiment. The best particle values are represented with red crosses, the filter mean with a light blue dashed line, and the
filter variance with dark blue dotted lines. Ground truth values correspond to the green lines. N = 100 particles are used, and the artificial moves correspond to Gaussian
noises with fixed covariance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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illustrates the results, by representing for each error threshold e
(X-axis), the number of sequences (Y-axis) for which the error on
the first parameter is below this threshold value. It shows that
for an error on the initial yaw estimation that is less than 6 de-
grees, the convergence results are comparable. For higher errors,
too few particles are sampled around the true pose which makes
the convergence more difficult. An example of a sequence for
which the initial pose is poorly estimated is shown in Fig. 11: given
the dynamic noise n,, the number of particles and the initial pose
error, no particle is sampled close enough to the good values to
have a high likelihood. The move and resampling steps cannot be
guided to the appropriate subspaces, and the convergence can,
therefore, not be achieved. A higher dynamic noise n, in Eq. (14),
associated with more particles, can be considered if larger pose er-
rors are expected. However, increasing the noise would also lead to
less accurate results in case of correct initial pose, and a compro-
mise therefore needs to be found.

Gaussian noise on the static parameters. Fig. 12 shows the fil-
ter evolution for the same sequence as in Fig. 9, but with unknown
pose parameters. The artificial dynamics are Gaussian noises with
fixed covariance for all particles. We can see that the deviation of
the particle distribution is larger than in the previous case. As
the pose is estimated simultaneously with the parameters, the
space dimension is higher, and it is difficult to differentiate parti-
cles having correct poses but wrong shape parameters from the
ones having the inverse configuration. The shape parameter filter-
ing therefore needs more time to eliminate the wrong states and to
converge.

Adaptive noise. Fig. 13 shows some convergence results given
input data without noise. When adding a noise of 2 pixels to the
feature point positions, we get the results presented in Fig. 14. De-
spite this observation alteration, filter means for the static param-
eters are close to the true values.

MCMC moves. This method uses a validation step before mod-
ifying the static parameters sampled for a particle. We evaluate
two types of sampling: local sampling around the current value,
and global sampling given the Gaussian prior. The move is only ap-
plied on the static shape parameters, thus optimizing the shape at
a fixed pose. This step requires a new likelihood computation, that
should theoretically be done on the whole set of observations
Y1,---,Y;. In this case, the validity of the previously computed
poses x. ... x"_ is not guaranteed. This is why we use Ar =0,
meaning that only the current view is used to compute the move
acceptation. Fig. 15 shows the filter evolution for the two types
of sampling methods, which lead to similar results.

Methods comparison. Let 0%, be the true value of the first shape
parameter and 0}, the mean value over the particle states. To
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Fig. 10. Robustness of the first shape parameter estimation depending on the initial
yaw angle error, varying from 0 (yawO) to 10 degrees (yaw10). The Y-axis indicates
the cumulative number of sequences for which the error on the first parameter is
below a threshold (read on the X-axis).

evaluate the different methods, we measure the error
€ =0}, — 0% for our 39 synthetic sequences on the last frame
of the sequence. Fig. 16 shows that all methods provide globally
similar results. Curves 3-5 present results when a noise is added
on the static parameters at each instant. Using an adaptive noise
(curve 4) instead of a fixed noise (curve 5) results in more accuracy
thanks to a better state space exploration. We can also notice that
the prior sampling of the shape parameters (normal distribution
with parameters (m = 0,0 = 1.0) for curve 3, (m=0,0 = 1.7) for
curve 4) influences slightly the curves: if the normal distribution
has a larger deviation, it becomes easier to reach large values of
the parameters, as more particles will then be sampled around
the true value. Conversely, for narrow initial sampling, the parti-
cles are concentrated in a smaller area, which leads to more accu-
rate results when the parameters are close to zero. This explains
why curve 3 is above the others when the error is small. The high-
est error is around 0.6 for ¢ = 1.7 (curve 4), against 0.85 using
standard normal distribution (curve 5). These values can be com-
pared to the interval covered by all 0} values of our database,
[-2.97;2.10], sampled from the standard normal distribution.
Using the weight adaptive noise method and a large deviation for
the initial parameter sampling, 87% of runs provide an error of less
than 0.34 (6.7% of the interval width).

Although MCMC moves involve a validation step using the
Metropolis-Hastings algorithm, the two evaluated methods
(curves 1 and 2) do not outperform the previous ones, based on a
systematic noise addition. Automatic noise methods may therefore
be preferred since the other methods do not provide significant
accuracy improvements despite their higher computational cost.

Failure cases. For some sequences, the true values are never
reached during the filtering process. The explanation is twofold.
First, it can be due to the model prior used to initialize the static
parameter particles. The more true parameters are different from
zero (|6, = 1), the smaller the probability to sample particles
around these true values, and the static parameter moves made
afterward do not always compensate for the initialization
(Fig. 11a). Secondly, the 3D pose can be poorly estimated, for in-
stance with very noisy detections. As all particle poses are sampled
around it, no poses will be close to the true one with a bad initial-
ization. In this case, the shape optimization will not succeed, be-
cause a good pose approximation is required to estimate the
parameters.

These two issues are sometimes related. When the observed
face is very different from the mean shape (meaning that
|0§;T\ > 0 for some i), the pose estimated by fitting the mean model
is not accurate, as the feature point positions are not the same on
the current face and on the mean one (Fig. 11b). In this case, there
are few particles in the appropriate pose and shape subspaces. This
is why we proposed to initialize the pose with each particle shape
model in Section 4.1, at the cost of N pose fittings. The following
results on real data were obtained with this improvement.

6.2. Evaluation on real data

We extend now the evaluation of our algorithm on several real
datasets acquired in our laboratory. The different scenarios are pre-
sented in the next section, before analyzing the visual and biomet-
ric results we obtained. The aim of this part is to evaluate the
effectiveness of our method on real data, with noisy or outlier
detections, and heads to be estimated which cannot be perfectly
described by our head model.

6.2.1. Acquisition setup

The datasets used for our evaluation were acquired in our labo-
ratory and correspond to a standard use of face recognition gates.
They differ in terms of acquisition conditions (indoor or outdoor
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Fig. 11. Example of non-convergence of the filter towards the ground truth values with unknown pose and noisy observations. N = 2500 particles are used, and artificial

moves are Gaussian noise with adaptive covariance.

sequences, use of specific lightening system), of number of cam-
eras (3 or 4), and of user behavior (stop during the walk through
the gate). The different types of databases are listed in Table 2.
As illustrated by the image samples in Fig. 17, the head poses seen
in the camera coordinate system vary generally between half-pro-
file and frontal pose, in addition to some pitch angle. There are no
extreme poses (for instance, no profile views), as we consider the
case of cooperative behavior of users who want to be recognized.
Indeed, the system used to acquire these videos is an authentica-
tion system conceived to obtain good views of faces, but limiting
the constraints for users during the acquisition.

No ground truth is available in terms of shape parameters and
poses for these real databases, and only 2D-acquisitions are given
to evaluate the quality of our results. For this reason, we propose
two types of evaluation; the first one is based on visual control,
to illustrate some results with the different methods implemented,
and the second one is performed on biometric results.

6.2.2. Visual analysis

A first analysis has been conducted on visual outputs of our
algorithm, such as the mesh projections on input images, the
extracted texture maps and resulting frontal views. Fig. 18 shows
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Fig. 12. Evolution of the filter static shape parameters when the pose is unknown, using N = 2500 particles. Artificial moves are Gaussian noises with fixed covariance.
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Fig. 13. Evolution of the filter static shape parameters, when the pose is unknown. No noise is added to the input feature points. N = 2500 particles are used, and artificial

moves are Gaussian noises with adaptive covariance.

the mesh projection given the estimated pose and shape parame-
ters at the end of the sequence. Additionally, it illustrates how
the internal edges and the feature points fit to the corresponding
features on the observations.

The evolution of the fitting quality between the beginning and
the end of a sequence is presented in Fig. 19. The improvement
is especially visible on the silhouette criterion, because the mean
model used at the beginning is not adapted to the observed face.

Comparison with the Levenberg—Marquardt method. We first
present some visual results to compare the output of the
Levenberg-Marquardt method versus our particle filter. Fig. 20

shows the mesh projections for two sequences, using the LM opti-
mization algorithm on the one hand and the particle filter method
on the other hand. We can notice that the shape estimated by the
Levenberg-Marquardt method is highly distorted on the first two
images, because feature points have been badly detected and
miss-detections are not handled. The multiple hypotheses evalu-
ated with the particle filter method allows us to find a better pose,
and thus leads to an improved set of shape parameters. Moreover,
with our online method, even if one frame has bad inputs, it will
not affect the whole estimation, because improvements can be
obtained with further observations. We can also note that no
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Fig. 15. Evolution of the filter static shape parameters when the pose is unknown. N = 2500 particles and MCMC moves are employed.

temporal consistency is verified when using the Levenberg-
Marquardt method, while in our case, we verify that the pose esti-
mation is consistent with the previous one for each particle. Thus,
we avoid punctual aberrant poses in the trajectory. On the third
image in the first line, we can see that the head pose is disturbed
on the left by a bad ear detection: the head pose veered off to
the left to get closer to this detection. With our method, some of
the particles do not use this detection to fit the head, which leads
to a better fitting regarding the different criteria. These particles
will be duplicated during the resampling process, and lead to the
displayed pose and shape estimation.

6.2.3. Biometric evaluation

In order to show the impact of the proposed algorithm on face
recognition systems, we also analyze its performance relatively to
a biometric evaluation. There is certainly a bias using this type of
validation, as we cannot perfectly measure the impact of the shape
estimation on the whole face comparison algorithm. Still, better
pose and shape estimations improve the frontal views used as in-
put for the comparison step. Moreover, due to the purposes of face
recognition systems, we believe that this measure is relevant.

Face comparison. To compare images of faces for recognition
purposes, discriminative information has to be extracted from each
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Table 2
Datasets used for the evaluation. For each dataset, several acquisitions were
performed for each person (ID), with different walking speeds.

Base Views Scene #ID #Seq/ID Total seq.
01 3 Outdoor 36 1-5 122
I 4 Indoor 61 3-6 273
12 3 Indoor 30 1-5 183

of them. Among the existing methods used for face comparison,
Gabor filters [19] or LBP [1] are the most commonly used descrip-
tors. Once computed, these characteristics are associated and used
to compute the distance between two facial feature vectors. A sur-
vey of face recognition algorithms using single images or videos is
proposed in [14]. The extraction of facial specificities can be done
on all images of a tracklet, or applied on a subset of images only.
The output of this step is concatenated in a facial template. In
our case, all templates are computed from a single image, which
can be one of the input images directly, or the frontal view gener-
ated once the shape has been estimated with either our particle fil-
ter or the Levenberg-Marquardt algorithm. To establish biometric
performances, we compare them to templates generated from ID
picture, where the face is seen frontally with controlled illumina-
tion and neutral expression. The distance between these templates
is finally related to a score which characterizes how similar the two
faces are.

Temporal estimation improvement. The first experiment consists
in studying the evolution of the face comparison score between the
ID picture of the person walking through the gate, and the recon-
structed frontal view at each instant. As the estimation is updated
with each new incoming observation, its accuracy should be up-
dated at each instant (at least if the acquisition conditions are con-
stant). We evaluate the gain of our algorithm by analyzing the
comparison score between the frontal view generated at each time
t and the reference picture (the frontal face stored in the ID
document).

Fig. 21 shows the evolution of this score for two sequences
(time is on the X-axis). The red crosses correspond to frontal views
generated from single images at time t, and the blue circles to

ens—_
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Fig. 17. Line 1: 4-cameras indoor; line 2: 3-cameras indoor; line 3: 3-cameras outdoor acquisitions.
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Fig. 18. Projection of the estimated mesh and internal edges on the acquired image at the end of a sequence.
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Fig. 19. Estimated mesh projection at the beginning (first line) and the end (second line) of the sequence. We can see that the shape differs more and more from the mean
model over time to better fit to the observations.

Fig. 20. Comparison between the pose and shape estimation computed by Levenberg-Marquardt (in green) and the one computed by particle filtering (in blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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views obtained after merging the texture maps in the available
views at the same time, following the method described in
Section 4.2. We can notice that the comparison scores are usually
higher with the merged texture (especially for the 11 database),
as the head is not necessarily seen frontally, and the texture map
extracted in a single image is not complete. Besides, the compari-
son scores increase throughout the sequence on the whole. The
score decrease at the end of the I1 sequence can be explained by
two factors: first, in some configurations, the pose becomes less
frontal when the face gets closer to the cameras. Less feature points
are visible and the detection quality is lower, which leads to badly
estimated poses. Secondly, the face can be over-exposed at the end
when specific lights are used, which leads to less contrast or un-
wanted shadows over the face. Since face comparison algorithms
are sensitive to the gradient positions in the face, such artifacts
can modify the scores to a similar extend as modifications induced
by errors on shape and pose. We therefore recommend using the
estimation obtained a few images before the end with the
4-camera configuration. The comparison scores can differ from
one identity to another, as they depend on the facial changes
between the reference picture and the acquisitions. Indeed, if a
person changed a lot between two acquisitions (ageing, make-up,
etc.), the similarity score will be lower than for two images taken
in a short time. This is related to the face comparison algorithms
that are not necessarly robust to all these factors. This explains
why the values obtained in the two curves of Fig. 21 are not the
same (in addition to the difference between the two acquisition
systems), because different identities have been considered.

The comparison with the LM method is shown in Fig. 22, in
which we can see that the face comparison score is higher with
the particle filter, thanks to a better pose and shape estimation.

Recognition rate evaluation. Finally we analyze our reconstruc-
tion algorithm in terms of biometric performances over a full data-
base, using DET curves (False Reject Rate versus False Acceptance
Rate). With such measures, one can easily determine how many
persons have been rejected for a given rate of false acceptance.
The smallest the FRR, the better are the results. Indeed, a perfect
system ideally rejects all false pairs (no False Acceptance) and ac-
cepts all true pairs (which corresponds to 0 False Rejection).

Fig. 23 shows the FRR performances for different values of FAR,
using observations at different instants to generate the frontal
view. To compute these performances, each generated frontal view
for a sequence has been compared to a reference basis containing
1086 items. As frontal views obtained after texture fusion between
the views of the considered instant have better scores than the
ones computed from each image separately, we only use the
merged frontal view. This figure illustrates the performance evolu-
tion when new frames are used to update the model. We can notice
some improvement at the beginning of the sequence, because new
images help to increase the parameter accuracy which results in a
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Fig. 22. Comparison score evolution over the sequence (left) and merged frontal
views generated at the end with the LM (blue) and the PF (red) methods (right). The
sample sequence belongs to the 12 database. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 23. FRR performances when integrating information over time, for three values
of FAR. The value on the x-axis corresponds to the number of frames used for the
estimation: the first value is the result using only the first frame, the following are
the outputs using the video from time 1 to i, with our particle filter based method.

better shape fitting. Nevertheless, performances deteriorate
slightly when adding the last images, because of the non-frontal
pose and the illumination conditions. These are reflected in the
quality of the texture used for the frontal view generation which
is only extracted from the images corresponding to the last instant
used in the estimation. This observation can be linked to the one on
temporal improvement analysis, when comparison scores decrease
at the end of the sequence. An additional criterion taking lighting
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Fig. 21. Evolution of the comparison score between the synthesized frontal view and the ID picture during two sequences. Red crosses (respectively blue circles) correspond
to views synthesized from texture maps extracted from each view (resp. from the merged texture map) at time ¢ — Databases I1 (left) and 12 (right). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Relative FRR reduction for PF with respect to LM: (FRRpr — FRRim)/FRRim.

11 database 12 database 01 database
FAR  102(%) 103 (%) 102%2(%) 10°3(%) 102%2(%) 103 (%)
ts ~14 -15 -21 -17 -8 -6
to -19 -15 -10 14 -7 —4
tis -6 -7 0 -11 -8 -3

conditions into account could therefore be interesting for choosing
the appropriate images for the texture extraction.

Comparisons between the FRR-FAR performances for the LM
and the PF methods are given in Table 3. We report results at
FAR =102 and 1073, according to the constraints presented in
[21], in terms of number of impostors tests. The estimations are
computed at three instants, and with three different methods:
the LM with the single frame t; as input, and the PF and the LM
with frames t; to tr. Since results are similar with the two LM
methods, we only indicate the gain of our method given the ones
obtained with the LM over the whole sequence. Improvements
are seen for all databases, which confirms the visual results pre-
sented in Section 6.2.2. Compared with the FRR obtained with
the LM method, the mean reduction of false rejections reaches 10%.

To illustrate the improvement achieved by the step of frontal-
ization, we add the following experiment on the database I1. In-
stead of using different images and generating a frontal view for
the coding step, we select a single image using the following
criterion:

Qual(image) = faceSize. min(leftEye.conf, rightEye.conf) (20)

The best image (BI) selected with this criterion corresponds to faces
with high resolution (faceSize) and good detection scores
(leftEye.conf and rightEye.conf are left and right eye confidence val-
ues). As our detectors were learned on frontal views, the detection
confidences will be higher for such faces. We compare this method
with the previous particle filter applied on a single instant corre-
sponding to the one of the best image selected, and to the particle
filter applied on the video sequence until the time associated to
the best image. The improvement achieved by the use of synthetic
frontal views for the coding and comparison steps is given by the
relative FRR reduction of the particle filter algorithms with respect
to the FRR provided by the method applied on the 2D best image
only (without any frontalization) (FRRpr — FRRg;)/FRRg;:

e —41% on a single timestamp, —45% on the sequence, at
FAR=107%;

e —24% on a single timestamp, —27% on the sequence, at
FAR=1073,

These results show that applying our particle filter algorithm to
estimate the pose and shape, and using the associated frontal
views has a high impact on the biometric performances. Indeed,
we cannot guarantee that faces are seen frontally in the best image,
thus reducing the face comparison accuracy. The use of the particle
filter on several timestamps provides even better results.

7. Conclusion and future work

We have presented a novel approach to estimation of the 3D
pose and shape of a head in a video sequence. Considering the
shape parameters as part of the hidden state in the particle filter
algorithm, our method allows us to update the parameter distribu-
tion at each instant. Moreover, using the multi-hypothesis

structure of the set of particles, we handle outliers in the set of fea-
ture points by varying the initial pose for each particle. In this way,
there is also less chance of getting a solution trapped in a local
maximum. Both visual and biometric results showed the interest
of our particle filter-based method. In the future, we will adapt
our algorithm to single camera and/or uncalibrated configurations
in order to allow genericity and extend its use to new applications.
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Appendix A. Levenberg-Marquardt derivation

We present here the derivative computation for one point de-
tected at time ¢ for the feature point retroprojection criterion only.
Derivation with respect to the prior term is computed in the sim-
ilar way, while finite differences are used for the other criteria, as
the derivative expressions are not available.

The derivatives with respect to the scale parameter are given
by:

B — ARt< +fols, )

(A1)
; o 4021
Dimp0) g — Bl foull for e~ 0,1
and the ones with respect to the shape parameter o; are:
B3 = KARssi(p)) fori=1---M
Py PLX00) gy _ Bl 0.1 (A-2)

9% Xoql2P
when the model constraint is related to the parameter probability
(Eq. (3)). All derivatives 2 E % oy ‘;’;t and 2 are zero if t#t,
as the projection at time t only depends on the pose at this time.
If = t (we recall that f is the time at which we consider the point),

the derivatives have to be computed for the translation values:

1
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respectively (0,1,0) and (0,0, 1) for the derivatives with respect to
¥y, and z;.

Using the derivated matrix Ry, = ”,R;, we get the following deriv-
atives with respect to the angles:
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and similar equations are obtained for the derivative with respect to
0 and ¢ respectively, using Ry = 9% and Ry o’fg

The lines in the jacobian J; correspondmg to the 2D detection of
a point at time t has the following structure (x, is used in place of
Xproj (D, £, X, 0) for the sake of clarity):
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