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A sequential segmentation framework, where objects in an image are successively segmented, generally
raises some questions about the ‘‘best’’ segmentation sequence to follow and/or how to avoid error prop-
agation. In this work, we propose original approaches to answer these questions in the case where the
objects to segment are represented by a model describing the spatial relations between objects. The pro-
cess is guided by a criterion derived from visual attention, and more precisely from a saliency map, along
with some spatial information to focus the attention. This criterion is used to optimize the segmentation
sequence. Spatial knowledge is also used to ensure the consistency of the results and to allow backtrack-
ing on the segmentation order if needed. The proposed approach was applied for the segmentation of
internal brain structures in magnetic resonance images. The results show the relevance of the optimiza-
tion criteria and the interest of the backtracking procedure to guarantee good and consistent results.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we deal with segmentation and recognition of ob-
jects or structures in an image, based on a generic model of the
scene. As a typical example, we focus on the recognition of internal
brain structures in 3D magnetic resonance images (MRI), based on
an anatomical model. More specifically, we address two important
problems occurring in sequential approaches, as detailed below.

In Refs. [1,2], the authors introduced a new paradigm combin-
ing segmentation and recognition tasks. We will refer to this para-
digm in the remainder of this paper as sequential segmentation
and interpretation. It is defined as a knowledge-based object recog-
nition approach where objects are segmented in a predefined
order, starting from the simplest object to segment to the most dif-
ficult one. The segmentation and recognition of each object are
then based on a generic model of the scene and rely on the previ-
ously recognized objects. This approach uses a graph which models
the generic spatial information about the scene in an intuitive and
explicit way (presented in [3]). This sequential segmentation
framework allows decomposing the initial problem into several
sub-problems easier to solve, using the generic knowledge about
the scene. This approach differs from a regular divide-and-conquer
approach since each sub-problem contributes to improve the
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resolution of the next sub-problems. It also avoids relying on an
initial segmentation of the whole image.

This approach, as pointed out in Ref. [2], requires to define the
order according to which the objects have to be recognized and the
choice of the most appropriate order is one of the problems that re-
main open. It also lacks a step which could evaluate the quality of
the segmentation of a particular object and detect errors to prevent
their propagation.

In this paper, we propose original methods to answer these two
open questions. Our contribution is twofold: first, we extend the
sequential segmentation framework by introducing a pre-atten-
tional mechanism, which is used, in combination with spatial rela-
tions, to derive a criterion for the optimization of the segmentation
order. Secondly, we introduce criteria and a data structure which
allow us to detect the potential errors and control the ordering
strategy.

The pre-attentional mechanisms were defined in [4–6] to guide
the focus of attention in modeling the visual system such as in fea-
ture integration theory. The sequential segmentation framework
may be viewed as a way to focus attention on a small part of the
scene and thus limit the search domain and the computational
load. Among these mechanisms, we propose to use the notion of
saliency to optimize the sequence of segmentation.

Our approach is applied to the segmentation and the recogni-
tion of internal brain structures in 3D magnetic resonance images.
The intrinsic variability of these structures, the lack of clear
boundaries and the insufficient radiometry make this
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segmentation problem a difficult one. Some of the difficulties can
be overcome by relying on generic knowledge about the human
anatomy, that will be exploited to derive the model guiding the
whole process.

This article is organized as follows. First we present in Section 2
a survey of knowledge based-approaches to the recognition of ob-
jects in a scene and provide an overview of the proposed approach.
Section 3 presents the knowledge representation model. In Sec-
tion 4 we propose to use some concepts of the visual attention to
optimize the sequential segmentation framework. Then, the opti-
mization of the sequential segmentation itself is described in Sec-
tion 5 and the mechanisms for evaluating each structure
segmentation in Section 6. Experiments on internal brain structure
segmentation and results are presented in Section 7. Finally we
draw some conclusions in Section 8.
2. Knowledge-based systems and spatial reasoning

The sequential segmentation framework of Colliot et al. [2] re-
lies on a priori knowledge about the scene and uses intensively this
knowledge at each step of the process. Thus, this framework may
be described as a knowledge-based system using spatial relations.
One can find a review of these systems in Refs. [7,8]. In this section,
we focus on knowledge-based systems using spatial relations to
describe the structure of the scene that have been applied to the
recognition of brain structures in medical images.

Spatial relations play a crucial role in model-based image recog-
nition and interpretation due to their stability compared to many
other image appearance characteristics. They constitute structural
information, which is particularly relevant when the intrinsic fea-
tures of the objects are not sufficient to discriminate them.

2.1. Knowledge-based approaches for internal brain structures
recognition

The difficulty of segmenting internal brain structures is due to
the similarity between their gray levels, the lack of clear bound-
aries at some places and the partial volume effect. Their intrinsic
features present a natural variability (in size and shape for exam-
ple) between individuals, which is further increased in pathological
cases. On the contrary, the spatial arrangement of these structures,
i.e., their relative positions, is stable in healthy cases and even
quite stable in pathological cases. For all these reasons, structural
models of the internal brain structures have been used to segment
and recognize the internal structures.

2.1.1. Structural model of the brain structures
One can find several anatomical descriptions of the brain, as at-

las [9], nomenclature [10] or ontology [11]. These descriptions are
often organized as a hierarchy of structures and provide descrip-
tions of structures and relations between them. In Ref. [3], in collab-
oration with a neuro-anatomist, the internal brain structures are
represented as a hierarchical graph where each vertex corresponds
to an anatomical structure and each edge carries spatial relations
between anatomical structures. This representation has been ex-
tended as the GRAFIP1 [12] to include information about the struc-
tures composition, functional knowledge and about the pathologies.

2.1.2. Segmentation and recognition
Several classes of approaches for internal brain structures seg-

mentation have been proposed in the literature. The first class of
approaches uses a model graph and the image to segment is repre-
1 For ‘‘Graph of Representation of Anatomical and Functional data for Individual
patients including Pathologies’’.
sented as a graph too. The segmentation and recognition process is
then formalized as a graph matching problem [13]. The authors in
Refs. [14,15] proposed to find a fuzzy morphism between a model
graph built from a manual segmentation and an over-segmented
image represented as a graph. Several optimization techniques
have been proposed for this task [16,17]. Another approach was
proposed in Ref. [18] and used an over-segmentation. The match-
ing is viewed as a constraint satisfaction problem, with two levels
of constraints and an ad-hoc algorithm. The authors recently ex-
tended their approach to cope with unexpected structures, such
as tumors [19]. For this class of approaches, the initial graph is usu-
ally built from an over-segmentation of the image to segment, and
the complexity of the method increases as the number of regions
obtained from the over-segmentation grows.

In the second class of approaches, a sequential segmentation of
the internal brain structures is performed, as proposed in Refs.
[1,2]. In these approaches, the segmentation and the recognition
are achieved at the same time. Each segmentation uses the spatial
information encoded in the model, and more specifically the spa-
tial relations to the already segmented structures. This information
allows restricting the search domain around the structure. In these
approaches, there is no initial segmentation of the image, but it
raises some questions like the order of segmentation of the differ-
ent objects or how to avoid the propagation of potential errors. Our
approach belongs to this class and our contribution is an original
answer to both questions.

The authors in Refs. [20,21] proposed a different type of ap-
proach, which is global and uses a constraint network. They pro-
posed to link each anatomical structure with a region of space
which satisfies all constraints in the network. Since it is hard to
solve this problem directly, only the bounds of the domain of each
variable (i.e. structure to be segmented) are modified by the pro-
cess and sequentially reduced using specifically designed propaga-
tors derived from the spatial constraints. Finally, a segmentation is
extracted using a minimal surface algorithm. This approach pro-
vides good results and does not need an initial segmentation
either. However, due to the number of constraints, it is quite com-
plex and the computation time is high, especially in 3D.

2.2. Proposed framework

We propose to extend the sequential segmentation framework
proposed in Ref. [2], where structures are sequentially segmented
from the easiest to segment to the most difficult ones. Each struc-
ture segmentation uses the information provided by the previous
segmentations. Our extension aims at answering the following
questions raised by this framework: ‘‘in which order should the ob-
jects of the scene be segmented?’’ and ‘‘how to assess the segmen-
tation result in order to detect potential errors and avoid their
propagation?’’.

The proposed framework has two levels, as depicted in Fig. 1.
The first level is a generic bottom-up module which allows select-
ing the next structure to segment. This level does not rely on an
initial segmentation or classification, but instead on a focus of
attention and a map of generic features described in Section 4.
The sequential approach allows this level to use two types of
knowledge: generic and domain independent features in unex-
plored area of the image to segment, and high-level knowledge
such as spatial relations linked to the already recognized struc-
tures. We propose to answer the first question by deriving a selec-
tion criterion from a pre-attentional mechanism: a saliency map.
This criterion is used to optimize the segmentation order and to se-
lect the next structure to segment at each step.

The second level achieves recognition and segmentation of the
selected structure, as well as the evaluation of the segmentation.
The recognition of the structure is achieved at the same time as
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the segmentation. This level is composed by the segmentation
method defined in Ref. [2] and an original evaluation method. It
uses two types of a priori information: the spatial information
which allows us to reduce the search area, and a radiometric esti-
mation of the intensity of the structure. Therefore, the radiometric
estimation needs to discriminate the intensity of the structure only
in the search area and not in the whole image. Once a structure is
segmented and recognized, this level also evaluates the quality of
the result and proposes a strategy to guarantee the spatial consis-
tency of the result and to potentially backtrack on the segmenta-
tion order. This allows answering the second question.

The two levels rely on graph representations described in the
next section.
3. Knowledge representation

Graphs are well adapted to represent generic knowledge, such
as spatial relations between the objects of a scene. In the sequen-
tial segmentation framework, the generic model of the scene is
modeled as a graph where each vertex represents an object and
each edge represents one or more spatial relations between two
objects. We introduce the following notations: Let RV,RE be the
sets of vertex labels and edge labels, respectively. Let V be a finite
nonempty set of vertices, Lv be a vertex interpreter Lv:V ? RV, E be
a set of ordered pairs of vertices called edges, and Le be an edge
interpreter Le:E ? RE. Then G = (V,Lv,E,Le) is a labeled graph with
directed edges. For v 2 V and e 2 V � V, d(v,e) is a transition func-
tion that returns the vertex v0 such that e = (v,v0). For v 2 V, A(v) re-
turns the set of edges adjacent to v. Finally, p = (v1, v2, . . . ,vn) is a
path of length n labeled as lp = (v1, e(v1,v2), v2, . . . ,vn).

A knowledge base KB defines all the spatial relations existing
between vertices in the graph:

KB ¼ fv iRv j; v i;v j 2 V ;R 2 Rg and
e ¼ ðv1; v2Þ 2 E() 9R 2 R; ðv1Rv2Þ 2 KB;

where R is the set of relations. In the following, we use fuzzy rep-
resentations of the spatial relations, since they are appropriate to
model the intrinsic imprecision of several relations (such as ‘‘close
to’’ and ‘‘behind’’), their potential variability (even if it is reduced
in normal cases) and the necessary flexibility for spatial reasoning
[22]. Here, the representation of a spatial relation is computed as
the region of space in which the relation R to an object A is satisfied.
The membership degree of each point corresponds to the satisfac-
tion degree of the relation at this point. Fig. 2 presents an example
of a structure and the region of space corresponding to the region
‘‘to the right of’’ this structure.

A directed edge between two vertices v1 and v2 carries at least
one spatial relation between these objects. An edge interpretor
associates to each edge a fuzzy set lRel, defined in the spatial do-
main S, representing the conjunctive merging of all the represen-
tations of the spatial relations carried by this edge to a reference
structure. Each fuzzy set gives an estimation of the localization
of an object. By localization, we mean an approximate region con-
taining the object. A conjunction of all these fuzzy sets gives the
most precise estimation of the localization. Since there is at least
one spatial relation carried by an edge, lRel cannot be empty. Let
le

Ri
; i ¼ 1; . . . ;ne the ne relations carried by an edge e. Then le

Rel is
expressed as: le

Rel ¼ si¼1::ne le
Ri

� �
with s a t-norm (fuzzy conjunc-

tion) [23].
We now briefly describe the modeling of the main relations that

we use: distances and directional relative positions. More details
can be found in Ref. [22]:

A distance relation can be defined as a fuzzy interval f of
trapezoidal shape on Rþ. A fuzzy subset ld of the image space S
can then be derived by combining f with a distance map dA to
the reference object A : 8x 2 S;ldðxÞ ¼ f ðdAðxÞÞ, where dA(x) =
infy2Ad(x,y).

The relation ‘‘close to’’ can be defined as a function of the dis-
tance between two sets: lclose(A,B) = h(d(A,B)) where d(A,B) denotes
the minimal distance between points of A and B: d(A,B) =
infx2A,y2Bd(x,y), and h is a decreasing function of d, from Rþ into
[0,1]. We assume that A \ B = ;. The relation of adjacency can be
defined likewise as a ‘‘very close to’’ relation, leading to a degree
of adjacency instead of a Boolean value, making it more robust to
small errors.
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Directional relations are represented using the ‘‘fuzzy land-
scape approach’’ [24]. A morphological dilation dma by a fuzzy struc-
turing element ma representing the semantics of the relation ‘‘in
direction a’’ is applied to the reference object A : la ¼ dma ðAÞ, where
ma is defined, for x in S given in polar coordinates (q,h), as:
ma(x) = g(jh � aj), where g is a decreasing function from [0,p] to
[0,1], and jh � aj is defined modulo p. This definition extends to
3D by using two angles to define a direction. Fig. 2 presents an
example of fuzzy landscape representing a directional relation.

Other relations can be modeled in a similar way [22]. These
models are generic, but the membership functions depend on a
few parameters that have to be tuned for each application domain
according to the semantics of the relations in that domain. Here we
propose to learn these parameters from a database of segmented
images.
the relation aRb (blue interval).
3.1. Images database

A database of 44 brain MRI, manually segmented, is used. This
database is composed by 30 healthy images and 14 images pre-
senting a brain tumor (with different localizations, types and
sizes). The set of healthy images is composed by the IBSR database2

and some images from the OASIS database (‘‘Open Access Series of
Imaging Studies’’).3 Manual segmentations are available for the IBSR
database. All other images have been manually segmented and tu-
mor segmentations have been validated by experts. These segmenta-
tions are used for learning the parameters of the relations, and to
evaluate the results.
3.2. Learning of spatial relations

The modeled spatial relations are based on fuzzy intervals that
are chosen of trapezoidal shape for the sake of simplicity. They de-
fine the functions f and g introduced above. The parameters of the
fuzzy intervals are learned for each triplet (A,R,B) where A and B
are two objects and R a spatial relation. The learning procedure
[25] basically consists in enlarging the kernel and the support of
the spatial relation in a way that all the targeted structures are in-
cluded in this support. Fig. 3 illustrates the effect of the learning on
the fuzzy interval. For example, let us consider the relation ‘‘the
putamen is on the left of the caudate nucleus’’. The objective of
the learning procedure is to ensure that the putamen is localized
in the support of the relation ‘‘on the left of the caudate nucleus’’.
2 Internet Brain Segmentation Repository. The MR brain data sets and their manual
segmentations were provided by the Center for Morphometric Analysis at Massa-
chusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/
ibsr/.

3 http://www.oasis-brains.org, built thanks to Pubmed Central submissions: P50
AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01
MH56584.
The learning procedure consists of three steps:

� For each image of the learning database, the relation (‘‘on the
left of the caudate nucleus’’ in our example) is represented with
a generic function Fg, i.e. with generic values for the relation
‘‘left of’’. Fig. 4b shows an example of a fuzzy subset obtained
with such values.
� For each resulting fuzzy subset, we compute the satisfaction

values at each point of the targeted structure and extremal val-
ues (minimum and maximum) are kept. If the targeted struc-
ture is included in the kernel of the relation, the satisfaction
value at each point is 1.00. In our example in Fig. 4b, the puta-
men is not completely included in the kernel and the minimum
of satisfaction is 0.37 (the maximum is 1.00).
� The mean mmin and standard deviation rmin of the minimum

values (respectively mmax and rmax for the maximum values)
are computed and a new function Fl is defined with the follow-
ing parameters:
n1 ¼ mmin � rmin n3 ¼ mmax

n2 ¼ mmin n4 ¼ mmax þ rmax
An example of this function is given in Fig. 4c and the fuzzy sub-
set using this function is displayed in Fig. 4d. This subset pre-
sents a larger kernel in this example.

3.3. Localization of a structure

We define the localization of a structure as the conjunctive
merging of all spatial relations targeting a structure. This corre-
sponds to a region of interest defined by the constraints on a struc-
ture. The learning step ensures that an object is localized in the

http://www.cma.mgh.harvard.edu/ibsr/
http://www.cma.mgh.harvard.edu/ibsr/
http://www.oasis-brains.org
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support of all spatial relations targeting this object. Therefore, each
spatial relation representation provides a rough localization which
is larger than the target object and includes it. Then a conjunction
of all spatial relations targeting an object allows us to get a more
precise localization. Fig. 5 presents the graph used in our experi-
ments and an example of localization.
4. Visual attention to optimize a sequence of segmentation

Visual attention is often referred to as a ‘‘spotlight’’ on the
visual field, i.e., at a given moment, the visual attention is
restricted to a spatial area (or a number of visual objects). The
exploration of the visual field is thus sequential. The sequential
segmentation framework may be viewed as the progressive
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the scene.

Visual attention was first modeled as two sequential steps: the
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the ‘‘spotlight’’ of visual attention by selecting the area of space to
visit. The relations between these two steps are in fact more com-
plex and both steps are intertwined.
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6,26] as bottom-up mechanisms, computed on the whole scene
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Fig. 6. The generation of a saliency map proposed in Ref. [28] on the left. An image and the corresponding saliency map on the right. The high saliency values correspond to
regions with a high contrast with respect to their environment and/or geometrical structures.
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correlated to the number of objects in the scene. A description and
examples are presented in Ref. [27].
4.1. Saliency and saliency maps

Among the pre-attentional mechanisms, we focus on the sal-
iency map, as defined by Itti and Koch [28,29] for 2D images. This
mechanism uses three different types of pre-attentional features:
opposition of colors (red4 vs. green, blue vs. yellow), intensity and
orientation (a Gabor filter with four different orientations). For each
feature the original image is filtered and a Gaussian pyramid is built
from the filtered image. Basically, the way of considering each fea-
ture is to look at discontinuities within each pyramid by comparing
‘‘fine’’ scale and ‘‘coarse’’ scale. A fine scale is a scale close to the ori-
ginal image. Each comparison generates a ‘‘feature map’’ reflecting
discontinuities for a specific feature and with a certain scale factor.
All feature maps issued from the same pyramid are merged after
normalization into a conspicuity map (one per each type of features,
so three maps here). Finally a weighted mean of conspicuity maps
produces the saliency maps.

The full process is described in Ref. [28] and illustrated in Fig. 6.
We describe now the different steps and the required adaptation to
compute saliency maps on 3D brain MRI.
4.1.1. Pre-processing: brain extraction
Our application focuses on recognition of internal brain struc-

tures. Therefore only the brain is needed in the image. The skull,
the eyes and other parts may be discarded. Thus, the brain is first
extracted from the 3D volume using the method proposed in Ref.
[30]. This allows us to reduce the search domain so as to consider
only the most relevant information for our task.
4 For interpretation of color in Figs. 1, 3–6, 9–14, 16–24, the reader is referred to the
web version of this article.
4.1.2. Pre-processing: resampling
For each feature, a multi-scale analysis is performed. Since the

original resolution of 3D MRI is often anisotropic, a resampling to
a volume of 256 cubic voxels allows us to compute saliency maps
on a volume with a fixed size and an isotropic resolution (the
choice of 256 voxels is guided by the most frequent size of the
images in our database described in Section 3). The chosen interpo-
lation method is a spline resample interpolation [31], available for
3D MRI in Brainvisa.5

4.1.3. Features and filtering
The original method uses three different types of features:

intensity, oppositions of colors and orientations. There is no color
in MRI. The intensity feature is the same as in the original method.

For the orientation, a 3D Gabor filter is used as described in
[32,33]. The bandwidth parameter is fixed to B = 0.55 in our exper-
iments. We use the following orientations (angles h and / in spher-
ical coordinates):
hn/
5 http://ww
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Each filter is symmetric thus only a half sphere is sampled. The
number of orientations is limited in order to reduce memory usage
and computation time.

4.1.4. Pyramids generation
A dyadic pyramid is built from each filtered image (1 for inten-

sity and 13 orientations, so 14 pyramids). In the original method, a

http://www.brainvisa.info
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Gaussian pyramid is built with 8 levels, but here, due to the size of
resampled brain MRI (256), we limit our pyramid to 5 scales.

For intensity, we build a Gaussian pyramid where the initial le-
vel i = 0 is the original image. At each level, the size of the image
remains the same, but the width of the Gaussian Filter (r) is
adapted: ri = i + 0.5.

For the orientations, instead of a Gaussian pyramid, we can take
advantage of the parameter of the Gabor filter, to directly produce
a pyramid where each level corresponds to a different filtering by a
Gabor filter in the same orientation. At each level, we adapt the fre-
quency of the Gabor filter, starting at 0.4 and adding 0.05 at each
level. Each resulting image is then smoothed with a Gaussian filter
(r = 0.5) to remove noise.

4.1.5. Feature maps
Feature maps are computed between ‘‘fine’’ scales and ‘‘coarse’’

scales of a pyramid. The fine scales used to compute maps are 1
and 2. The coarse scales are the fine scales plus a step d 2 {1,2},
i.e., 1 + 1,1 + 2,2 + 1,2 + 2. A feature map is a point-to-point differ-
ence between both scales which, in this approach, have the same
size. Pyramids and feature maps are illustrated in Fig. 7 for both
intensity and orientations.

4.1.6. Normalization
There are 14 pyramids with four feature maps each. The nor-

malization step is therefore very important. The normalization
operator N we use is the same operator as in the original method
[34]. This operator is designed to promote maps where there are
few high peaks, rather than maps where there is a large number
of peaks but with the same values.6 The normalization is achieved
in three steps:

� normalize the map in an interval [0,M] with a fixed M to remove
features specific dynamics,
� compute the average value m̂ of all local maxima lower than M,
� multiply each point of the map by ðM � m̂Þ2.

4.1.7. Merging
All feature maps belonging to a same pyramid are merged and

produce a ‘‘conspicuity map’’. All the conspicuity maps belonging
to a same feature are also merged in order to produce a unique
conspicuity map per feature type (intensity and orientation in
our case).

For intensity, only one pyramid is built. The conspicuity map is
generated as:

Cint ¼ �fN ðIce � IcoÞ; ce 2 f1;2g; co ¼ ceþ d; d 2 f1;2gg;

with � a point-to-point addition and � a point-to-point difference.
For orientations, an intermediary map is generated for each pyr-

amid. All these maps are then normalized and merged in the same
fashion:

Ch;/ ¼ � N Ih;/ce � Ih;/co

� �
; ce 2 f1;2g; co ¼ ceþ d; d 2 f1;2g

n o
Corient ¼

X
h;/

NðCh;/Þ:

The saliency map is then generated as a weighted mean of con-
spicuity maps:

Saliency Map ¼ NðCintÞ þ N ðCorientÞ
2

Fig. 8 presents some examples of saliency maps generated from
brain MRI.
6 The normalization achieved by the operator N is not a normalization in the
common sense.
4.2. Using focus of saliency maps as a region feature

In a sequential segmentation framework, a usual question is the
order of the successive segmentations. The saliency map is a bot-
tom-up pre-attentional mechanism designed to guide the atten-
tional step. Therefore, considering a parallel between the
attentional step and the segmentation step in sequential segmen-
tation, we propose to use a pre-attentional mechanism to guide
the segmentation process, i.e. define the best sequence of
segmentation.

Thanks to the spatial information contained in the graph, we are
able to compute the localizations of all structures connected to a
previously segmented structure, as described in Section 3. The
selection of the next structure to segment is achieved by compar-
ing the saliency at each localization of candidate structures (these
localizations may overlap each other). The histogram of the sal-
iency map corresponding to the localization is generated. Thus,
the comparison between localizations is a comparison between
histograms of saliency of each region.

The computation of the saliency map described above shows
that the saliency information is based on discontinuities for several
pre-attentive features. Hence, since usually a structure is easier to
segment if its border is well defined, we can assume that a struc-
ture is easier to segment than another one if its localization is more
salient.

4.2.1. Comparison of localizations
To compare two histograms (previously normalized), we choose

the Earth mover’s distance (EMD) [35]. This measure gives the
transportation cost between two distributions. If p and q are two
probability distribution functions and N the number of bins, then
the EMD measure is defined as:

emdðp; qÞ ¼ min
ai;j2M

XN

i¼1

XN

j¼1

ai;jcði; jÞ;

where M¼ fðai;jÞ;ai;j P 0;
P

jai;j ¼ p½i�;
P

iai;j ¼ q½j�g and c(.,.) is a
distance between bins. For non-circular 1D histogram, if
cði; jÞ ¼ ji�jj

N , then the EMD measure may be computed as the differ-
ence between corresponding cumulative histograms [36]:

emdðp; qÞ ¼
PN

i¼1jP½i� � Q ½i�j
N

; ð1Þ

where p and q are two probability distributions, P and Q the two
corresponding cumulative histograms and N the number of bins.
The computation is then direct and very simple in this case.

In order to define an order between two distributions, we com-
pute the following criterion:

sðp; qÞ ¼
XN

i¼1

P½i� � Q ½i�;

with the same notations as before. A signed EMD measure, denoted
EMDS, is then defined as:

emdsðp; qÞ ¼
emdðp; qÞ if sðp; qÞ < 0;
�emdðp; qÞ if sðp; qÞP 0:

�
ð2Þ

Fig. 9 (a) presents cumulative histograms for the localization of the
caudate nucleus (CDl) and the thalamus (THl). The EMD measure
between these distributions is emd(CDl,THl) = 0.0084. With the
EMDS measure, we are able to determine which distribution pre-
sents the most salient value: emds(CDl,THl) = 0.0084 and
emds(THl,CDl) = �0.0084. In this example, the localization of the
caudate nucleus is preferred (but both distributions are very close
to each other).



Fig. 7. Generation of a saliency map. A slice of a 3D MRI is presented at the top left of the figure, and corresponds to the initial level of the Gaussian pyramid (on top)
generated for intensity features. Second line: corresponding feature maps, computed by applying the center-surround operator (�) between fine and coarse scales of the
pyramid. Third line: ‘‘Gabor’’ pyramid in a selected orientation and corresponding feature maps (last line) for the same slice on the brain MRI.
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4.2.2. A saliency-based criterion
A criterion is defined to compare localizations and to select one

of them. It aims at selecting the localization which presents the
highest saliency distribution, as defined above. From experimental
observations, it appears that the precision of the localization
(defined below) must be taken into account too. We thus define
a criterion that merges both aspects, in order to privilege regions
that are more focused, i.e. with a more restricted support.

The way the localizations are generated ensures that the candi-
date structure is included in the localization (considering that the
previous segmentations are consistent with the model). However,
the support of the localization may be large (i.e. including several
other objects), for example, if the only spatial relation available
to define the localization of a structure is a directional relation.
Therefore, the more a localization includes other parts of the im-
age, the less the saliency of this localization provides relevant
information about the targeted structure. Thus the precision aims
at estimating how much the support is restricted.
Since it is difficult to estimate the precision of a given localiza-
tion (before segmentation and without a priori information about
the structure volume), another measure is used to evaluate the sal-
iency of a localization based on a comparison with a learned sal-
iency distribution modo, where the subscript stands for the
targeted structure o. This distribution is computed on the same
database as before and corresponds to the average of all the distri-
butions obtained for the segmentations of the structure o in the
database. The mean dmodo and the standard deviation rmodo are also
computed in order to center and reduce the measure. The distance
between the saliency of the localization (loco) and the learned sal-
iency (modo) for an object o is estimated with a regular EMD as:

doðloco;modoÞ ¼
emdðloco;modoÞ � dmodo

rmodo

: ð3Þ

Fig. 9 (b and c) shows the distribution computed from the localiza-
tions and the learned distribution for the left caudate nucleus (CDl)
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Fig. 8. Some images and their corresponding saliency maps. All computations are done in 3D but only one slice is presented here. Parts of the brain MRI presenting a high
contrast (like the lateral ventricles, dark structures in the center) present high saliency values in the corresponding image. The tumor in the example on the right also presents
high saliency values.
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(a) (b) (c)
Fig. 9. The saliency map of a brain MRI and the saliency at the localization of the left caudate nucleus (CDl) and the left thalamus (THl). (a) The selection among these two
structures takes into account the comparison between both saliency pdf computed from the localization (here the localization of CDl is the most salient one with
emds(CDl,THl) = 0.0084), but also a comparison between the localization and the model for each structure: (b) the comparison for the CDl is dCDl = �0.089, and (c) for THl:
dTHl = 0.791. Finally, the CDl is selected in this example among four structures with a criterion value cCDl = 0.076.
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and the left thalamus (THl). The following comparison values are
obtained: dCDl = �0.089, and dTHl = 0.791.

The criterion to select the best localization is then defined as:

co ¼ jdoðloco;modoÞj �
X

o02Vcnfog
emdsðloco; loco0 Þ ð4Þ

where Vc is the set of all candidates. The structure o minimizing co is
selected. In the example illustrated in Fig. 9, the caudate nucleus is
selected with a value cCDl = 0.076.

4.3. Saliency in pathological cases

There are different types of tumors, with different visual
appearances and thus different saliency maps. Fig. 10 presents
two images with a tumor and their corresponding saliency maps.
The tumor in the first case (on the left) presents a high contrast
with respect to its surrounding and to the necrotic part. The sal-
iency of this tumor is higher than in most of the other parts of
the brain (the necrosis saliency however is low). On the contrary,
the second type of tumor is large and homogeneous and thus does
not present a high contrast with respect to its surrounding. The sal-
iency of this tumor is lower than the one of the brain. For several
other tumors, the saliency at the location of the tumor is not higher
or lower than in the brain.

5. Optimization of a sequence of segmentation

The process of sequential recognition is viewed as the sequen-
tial specialization of a generic graph to a case-specific graph, i.e.,
where each node representing an anatomical structure has been
linked with the corresponding region of the image. If the generic
graph includes only a part of the object represented by the image,
then the segmentation process segments only these objects and
parts of the image remain unexplored.

The process is viewed as the progressive exploration of the im-
age, starting from a reference object. For instance, the ventricles of
the brain are the reference structures for the recognition of the
internal brain structures. These structures present a high contrast
with respect to the gray and white matter and may be easily seg-
mented in most of the cases. Furthermore, they also present a high
saliency. Their choice as a starting point for the exploration of the
image is then consistent with an exploration of the image like the
visual system would do.

The exploration is achieved using the available spatial informa-
tion in the graph. The spatial relations representations allow us to
answer the following question: ‘‘from a reference object, which are
the locations in the image space where the spatial relation is satis-
fied to a given degree’’. Therefore, only the spatial relations with an
Salient Tumor

Tumor
Necrosis

Fig. 10. Two pathological cases and the corresponding saliency maps. The saliency of the
a high-saliency corresponding to the high contrast between the tumor and its surrou
homogeneous. The saliency of the latter is very low.
available (i.e. segmented) reference object are representable, and
only the objects connected by an edge to a segmented object have
a localization that can be actually computed.

At each step of the process, the graph is filtered to keep the rel-
evant information: two sets of vertices and the set of edges be-
tween these two sets are defined. The first set Vfs is the set of
vertices which are already segmented and connected to a non-seg-
mented vertex. The second set Vfo is the set of vertices which are
not segmented and connected to the first set. This set includes
all vertices which may be segmented at this step of the process.
The set of edges Ef represents all spatial relations representable
at this step of the process and which target a non-segmented struc-
ture. Fig. 11 presents the initial graph and the filtered graph at the
first step of the process.

Once the graph is filtered and thus the candidate structures
identified, their localization is computed as the conjunction of
the representations of all spatial relations targeting this structure,
as presented in Section 3. The selection of the next structure to seg-
ment is achieved according to the criterion co presented in
Section 4.2.

5.1. Segmentation of a structure

The segmentation method we use has been proposed in Ref. [2]
and is not part of our work. We briefly present this approach here
to understand its influence on the segmentation results.

This segmentation approach uses two knowledge sources: a
radiometric estimation of the intensity of the structure and the
spatial relations targeting the structure. These two different types
of information are closely intertwined in the proposed approach:
the radiometric estimation for this problem is not enough to seg-
ment a structure and is necessarily combined with spatial informa-
tion, which reduces the search domain. Furthermore, the spatial
relations are used to guide and constrain the segmentation process.
This approach is composed of two steps. The first step combines
the knowledge to recognize the structure and provides a rough
segmentation. In the second step, the segmentation is refined by
a deformable model method which also uses spatial information
as an additional energy term to guide the process.

Fig. 12 illustrates the procedure. A map corresponding to the
searched structure (here a thalamus) is generated by thresholding
the original image with the radiometric estimation. This estimation
is composed by two parameters a and b which are used to express
the average ðx̂Þ and the standard deviation (rx) of the intensity of a
given structure as a function of the white matter (wm) and the
gray matter (gm) of this particular image: x̂ ¼ ax̂wmþ
ð1� aÞx̂gm and rx ¼ b ðrwmþrgmÞ

2 , as proposed in Ref. [37]. The image
is thresholded as follows: if a voxel has a radiometry between
Not−salient Tumor

Tumor

tumor highly depends on the tumor type and aspect. The tumor on the left presents
nding (outside the tumor and the necrosis). The tumor on the right is large and
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x̂� rx and x̂þ rx, its value is set to ’1’, and ’0’ otherwise. The result-
ing map is masked by the spatial information, i.e., the localization
of the structure as defined in Section 3, in order to reduce the
search domain around the structure, and then filtered using mor-
phological operations. The largest connected component is then
identified as the structure and corresponds to the initial segmenta-
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Fig. 11. Initial graph (for the left hemisphere only) and the corresponding filtered graph
ventricle) are in the set Vfs of vertices already segmented. The caudate nucleus and the th
Vfs and therefore is not in Vfo. The set of edges Ef includes all edges oriented from a vert
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Fig. 12. The process to segment a single structure proposed in Ref. [2]. The first step co
second step refines the segmentation with a deformable model approach guided by the
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Both sources of information, spatial and radiometric, are crucial
for this approach and are mutually dependent: the restriction of
the search domain thanks to the spatial information allows the
radiometric information to be only used to discriminate the
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targeted structure and its surrounding, and not the whole image.
Errors may occur when the spatial information does not allow us
to reduce the search domain in a way that the radiometric infor-
mation is relevant, or when the radiometry of a structure does
not allow discriminating it from its immediate surrounding.

We recompute the estimations on our database, using the man-
ual segmentation of each structure. For each image of a given set,
the exact parameters (ai,bi) are computed. The a parameter for this
set is the average of the ai values. The b parameter is the maximum
of all bi values. Fig. 13 (on the left) presents each (ai,bi) computed
for a given structure and the corresponding a parameter. In this
plot, the ai values present a large dynamic and therefore the
average is inexact for several images. In order to reduce the dis-
tance between the estimation and the exact values, three different
estimations have been computed on three sets of images
composing our database (IBSR, OASIS and pathological images).
The obtained values for each set, used in our experiments, are
presented in Fig. 13 (on the right).

When the radiometric estimation is not correct, the structure
may be incomplete (a missing part), or include its surrounding or
other parts of the image. In all these cases, an erroneous segmen-
tation is produced and propagates through the representation of
the spatial relations using this structure as a reference. Therefore,
the segmentation of a particular structure has to be evaluated
and the process may incriminate the previous steps when errors
occur.

In the next section, we present how to assess the segmentation
in order to detect possible errors.

6. Segmentation assessment

As mentioned, during the segmentation of a particular struc-
ture, errors may occur and propagate. Therefore, the process must
be able to detect errors immediately or a posteriori and to update
its strategy, i.e. backtrack and change the sequence of segmenta-
tion even if this implies to discard previous structures segmenta-
tions. To this end, two criteria are proposed here as well as a
structure of control, which consists of a tree of all current and past
segmentations, used to update the strategy during the process.

6.1. Criteria for segmentation evaluation

The first criterion concerns the spatial information and controls
the consistency of the structural model. The parameters of each
spatial relation are learned in a way that the targeted structure is
included in the kernel of the relation as described in Section 3.
The spatial consistency criterion evaluates if this assertion is still
true once a new structure segmentation has been added into the
graph. The spatial consistency is not evaluated in the whole graph
at each step, but only on the spatial relations using the recently
segmented structures as reference. Fig. 14 illustrates how the spa-
tial consistency is evaluated for a small graph. A structure (3) of the
graph is segmented using the spatial information from segmented
structures 1 and 2. The spatial relations issued from structure 3
and targeting segmented structures are represented. A criterion
(presented below) allows us to compare the resulting fuzzy subset
and the segmentation, which has to be localized in the kernel of the
relation.

To evaluate the spatial consistency of a spatial relation lRel tar-
geting a structure lObj, we compute a fuzzy satisfiability [38] be-
tween the fuzzy subset representing the relation and the
targeted structure:

fsðRel;ObjÞ ¼
P

x2S minðlRelðxÞ;lObjðxÞÞP
x2SlObjðxÞ

; ð5Þ

where S denotes the image space. The fuzzy satisfiability is maxi-
mal if the targeted structure is included in the kernel of the fuzzy
subset representing the relation.

The second criterion is an intrinsic criterion which compares
the segmentation result to a model. In fact, due to the intrinsic var-
iability in shape and size of the internal brain structures, this crite-
rion compares the learned pdf of saliency, i.e., checks if the ‘‘visual
aspect’’ or the appearance against the surrounding of the structure
is the expected one. The criterion is the EMD distance between the
pdf of saliency computed with the segmentation and the pdf
learned for this structure, as in Eq. (3):

doðsego;modoÞ ¼
emdðsego;modoÞ � dmodo

rmodo

: ð6Þ

where sego represents the saliency pdf computed from the segmen-
tation, modo the saliency pdf learned for this structure, dmodo the
mean EMD distance between each case in the database and the
learned pdf and rmodo the standard deviation of this measure.

These two criteria are used to update the strategy of choice, as
described below. We first introduce the data structure used to keep
information about the steps of the process.

6.2. Segmentation tree

The previous criteria allow us to detect an erroneous structure
segmentation. These errors may happen because of the intrinsic
difficulty of segmenting a structure or because of the radiometric
estimation. The error may also be caused by the propagation of
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previous (undetected) errors. Typically, a wrong segmentation
propagates because the spatial relation using this structure as a
reference will be wrong too. Therefore, we need to keep track of
the history of the previous steps of the process to be able to
backtrack.

A tree structure, which contains information about all the seg-
mentations done by the process, is used as a journal of each real-
ized sequence (even sequences finishing by failure). The root of
the tree is composed by all the reference structures. Each node cor-
responds to a segmentation of a particular structure (i.e. a same
structure may appear in different sequences, but only one is seg-
mented at a given step). The success or failure of the segmentation
is encoded in the node. Sequences without failure are denoted ‘‘ac-
tive sequences’’.

For each segmented structure, its localization is generated using
all spatial relations targeting this structure and these spatial rela-
tions use one or more reference structures (already segmented).
Among these structures, we denote as the ‘‘parent structure’’ the
most recently segmented structure. When a structure is seg-
mented, it is attached in the segmentation tree to its parent struc-
ture in the active sequence. If there is no parent structure, then the
node is attached to the root of the tree.

This tree structure allows us to know during the process which
sequence of segmentation is already tested and therefore to avoid
loops (if two sequences are alternatively tested with failure). It is
also possible to easily find the untested sequences and eventually
to stop the process without finishing if all sequences lead to a
failure.
6.3. Backtrack and path selection

In case of an error occurring during the segmentation of a struc-
ture and detected thanks to the previous criteria, the strategy of
control of the process is simple: it consists in preventing the sys-
tem of trying the same sequence, which is immediate thanks to
the segmentation tree.

The evaluation procedure is presented as pseudo source code in
Fig. 15. When the evaluation indicates an error, the following cases
are considered:
Fig. 15. Pseudo-source code of the evaluation process. Both the current structure and it
allow to separate different cases where the segmentation is accepted or discarded, and
� if there is no segmentation produced (i.e. the resulting binary
map is empty), the parent segmentation (if there is one) is
discarded;
� if there is a segmentation, then the spatial consistency criterion

is tested. The fuzzy satisfiability is a value in the interval [0,1]
and a threshold is fixed at 0.8. In case of failure, the parent seg-
mentation (if it exists) is discarded as well as the current seg-
mentation, otherwise only the current segmentation is
discarded;
� the saliency criterion is then tested. A threshold has been set to

T ¼ 2rmodo . The current segmentation is discarded in case of
failure;
� if both criteria are satisfied, then the segmentation is accepted

and the graph is updated.

Fig. 16 presents an example of the segmentation tree at differ-
ent steps of the process. The right caudate nucleus is segmented
first, followed by the right thalamus with a failure. This failure dis-
cards the first segmentation. After successfully segmenting two
structures on the left (CDl and THl), the right thalamus is seg-
mented (but in first position this time) and then the caudate nu-
cleus, with a failure which discards the thalamus segmentation.
The segmentation tree allows us to easily find the untested config-
urations, and the segmentation is finally achieved by restoring the
initial segmentation of the right caudate nucleus and then by seg-
menting the putamen before the thalamus.

In the worst case, the complexity of this procedure can be high,
since potentially the whole tree of possible paths could be ex-
plored. However, in practice, we have observed that only few back-
tracking steps are actually performed (see Section 7), which makes
the approach tractable.
7. Experiments on MRI images for internal brain structures
segmentation

In this section, we present the experiments conducted on the
images of the database described in Section 3. The proposed
method is applied on each image by computing the parameters
of the spatial relations using a leave-one-out procedure. We first
s parent structure are concerned during this procedure. The values of both criteria
eventually the parent segmentation is discarded too.
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Fig. 16. Structure of control of the segmentation results and configuration of the process. This structure keeps information about past segmentations of structures with
different configurations to prevent the process of trying an already known configuration and to easily find remaining not-tested configurations.

Table 1
Numerical evaluations of segmentation results. For each structure, a comparison with a manual segmentation is realized and the mean distance is computed. An average of these
distances is computed for each structure over all healthy cases in the database. The segmentation scheme is the same for each structure segmentation. The differences consist of
the spatial information used as an input to the segmentation method. The average mean distance (AMD) for the caudate nucleus is higher with the expert path, since it is always
segmented first and thus with less spatial information. The mean distances of the other segmentations are similar for all methods.

Struct Expert path Optimized path Optim. path + belief revision

# segm. AMD # segm. AMD # segm. AMD

CDl 30 1.69 30 1.64 28 1.30
CDr 30 4.63 29 2.20 29 1.49
THl 27 1.90 27 2.25 28 2.39
THr 23 2.36 27 2.71 27 2.30
PUl 26 3.21 27 3.11 27 3.03
PUr 22 3.28 26 3.43 27 3.42
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illustrate step by step the segmentation process on one example.
Then, the results on the whole database are presented and com-
pared to those obtained with a segmentation path defined a priori
by an expert. Quantitative evaluations are provided and the influ-
ence of the radiometric estimations as well as of the parameters of
the spatial relations is discussed. The test database is composed by
30 healthy cases and 14 pathological ones and comparisons are
performed on the whole data, except for the comparison between
structures presented in Table 1, which are evaluated only on the
healthy cases (this avoids including the potential impact of a
pathology on the normal structures in this evaluation).

7.1. Segmentation of an image step by step

As an example, we illustrate the segmentation process on an
image of the OASIS database depicted in Fig. 17. The parameters
of the spatial relations are learned on the whole database (healthy
and pathological cases) following a leave-one-out procedure, i.e.
without considering the processed example in the learning step.
In the following figures, each illustration presents the same slice
of the 3D volume (but the whole process is actually applied in
3D). The path derived from the optimization method and followed
during the segmentation is the following: right caudate nucleus,
right thalamus, right putamen, left thalamus, left caudate nucleus
and left putamen. Note that the path is not the same on both sides
of the brain.

Fig. 17 illustrates the first step of the process. For the sake of
simplicity, only the structures of the right hemisphere (i.e. on the
left on the displayed images) are represented. For visualization
purpose, and to show the relevance of the computed localizations,
the candidate structures are drawn on the localizations in green.
The localizations are computed using the spatial relations to the
reference structures and the selection is achieved using the locali-
zation, the saliency map and the criterion co defined in Eq. (4). In
this example, the right caudate nucleus is selected and segmented.
The graph is then updated. In the second step (Fig. 18), the puta-
men is now a candidate, since it is connected to a segmented struc-
ture, the caudate nucleus. The localizations of the candidates are
computed. The localization of the thalamus is not the same as in
the previous step since it now benefits from the spatial relations
to the caudate nucleus, which leads to a more precise localization.
It is selected as the next structure to be segmented. After its seg-
mentation, the localization of the putamen is recomputed and also
benefits from new spatial relations (to the thalamus). The putamen
is then selected and segmented. At each step the segmented
structure is labeled as such in the graph (in blue in the figures)
and the graph is updated with the new candidate structures.
The process then goes on with the other structures. The whole seg-
mentation sequence is finally the following: CDr, THr, PUr, THl,
CDl, PUl. The flexibility of the path optimization and its adaptive
feature depending on the data are clear here, since the optimized
sequence is the same as the one used in [2] in the right hemi-
sphere, while it is different in the left one. The final results are pre-
sented in Fig. 19, showing that all structures are well recognized
and segmented.

7.2. Comparison with a fixed path

In this section, we compare the results obtained with three
different approaches, on the healthy cases of the database:

1. a priori defined path, called ‘‘expert path’’, where the caudate
nucleus is segmented first, then the thalamus and finally the
putamen in both hemispheres, as in Ref. [2]. This path is used
for all images and not adapted to each case. Note that with this
method, if an error occurs, it may prevent the correct segmen-
tation of other structures in the same hemisphere;

2. proposed optimized path, computed for each individual case,
and therefore potentially different from one image to another
one. Note that the only difference with the first method is the
order in which structures are segmented and the possibility to
backtrack;
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Fig. 17. Initial step of the process. Only the reference structures (lateral ventricles and third ventricle) are segmented and represented in blue in the graph. Four structures are
candidates for the next segmentation step (left and right caudate nuclei and thalami, represented in green in the graph). The localizations of these structures are computed
using the spatial relations to the reference structures (only two are represented here, as white regions, in the right hemisphere). A structure is then selected (here the right
caudate nucleus), according to the criteria co, and segmented.
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Fig. 18. Second step (top) and third step (bottom). After the segmentation of the right caudate nucleus in the first step, the putamen becomes a candidate. The localization of
the thalamus now benefits from spatial information related to three structures and is more precise than in the previous step (the white region is reduced). In the third step,
the right putamen is segmented.

Fig. 19. Final segmentation after six steps of the process (one axial slice and one
coronal slice are displayed): all structures have been successfully recognized and
segmented.
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3. proposed optimized path and modified segmentation scheme
using a simple ‘‘belief revision’’ scheme: when a structure is
segmented and accepted, the resulting segmentation is used
to recompute the parameters a and b (see equations in Section
5) used for the radiometric estimations. A new segmentation of
the same structure is achieved and if the new segmentation
improves both evaluation criteria, it replaces the previous
segmentation.

Fig. 20 presents a comparison between the three methods:
sequential segmentation following an expert path, an optimized
sequence and the optimized sequence with belief revision. In the
left hemisphere, the path followed is the same for all approaches
and results are identical for the expert path and for the optimized
one. With an additional belief revision approach, the numerical



(a) Expert path:

Segmentation path: CDl CDr THl PUl

(b) Optimized path:

Segmentation path: THr CDr CDl THl PUr PUl

(c) Optimized path with belief revision:

Segmentation path: THr CDr CDl THl PUl PUr

Numerical evaluation of structure segmentations (mean distance):
CDl THl PUl CDr THr PUr

expert path 4.13 0.95 2.62 26.9 NS NS
optimized path 4.13 0.95 2.62 0.63 2.34 2.87

w. belief revision 0.94 1.01 2.49 0.64 2.34 2.91

Fig. 20. Comparison between sequential segmentations following an expert path (a), our approach (b), and our approach with belief revision (c). Values of the two criteria are
given in the graph (spatial consistency on edges and saliency on vertices). In the left hemisphere, the same path is followed in (a) and (b) and thus the numerical evaluations
of each structure segmentation are the same. With belief revision, the numerical evaluations of the CDl and the PUl are better, and slightly higher for the thalamus. In the right
hemisphere, different paths are followed. The expert path segments the caudate nucleus (with errors) and fails to segment two structures, while the other approaches
segment all structures correctly. The numerical evaluation of the caudate nucleus is significantly better.
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evaluations are better for the segmentation of two structures. In
the right hemisphere, the segmentation according to the expert
path fails to segment the caudate nucleus: the procedure produces
a segmentation, but it is not correct and the structure is mis-recog-
nized (with a part of its tail and the back part of the thalamus) and
thus the other structures cannot be segmented. With an optimized
path, the thalamus is first segmented and then the caudate nucleus
is segmented with success. Finally the putamen is segmented. As
shown in this example, our approach allows detecting the mis-rec-
ognition of the right caudate nucleus and adapting the path by
backtracking on the segmentation ordering, in order to correctly
recognize and segment all structures.
7.3. Segmentation evaluations

In order to provide a quantitative evaluation of the results, the
mean distance between the obtained segmentation and a manual
segmentation is computed for each structure. An average value is
then computed for each structure over all healthy images in the
database. Table 1 presents the obtained values. The results show
that the mean distance for the caudate nucleus is better with an
optimized path. An explanation is that with the expert path, the
caudate nucleus is always segmented in first place and thus with
less spatial information than a structure segmented later on in
the sequence. On the contrary, in the proposed approach, the
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Table 2
Quantitative evaluation of segmentation results on the 44 images of the database (30 healthy and 14 pathological ones). Values on top represent the final total number of
segmentations realized by the process. There are 264 structures in total and our approach allows us to segment more structures than a sequential segmentation following an
expert path (there are less failures). The spatial consistency criterion is more often used than the saliency criterion. In the bottom part of the table, the number of accepted
segmentations against the final number of segmentations shows the number of adaptations of the path needed to achieve the segmentations.

Expert Saliency Belief

# Segmentations Correctly segmented structures 209 224 233
Failures 55 40 31

Criteria Saliency 2 6 13
Spatial consistency 21 79 65
Both 2 3 3

Segm stats Accepted 209 309 309
Failed (no result image produced) 10 12 16
Discarded (itself) 2 6 13
Discarded (as parent) 0 85 76

Fig. 22. Distribution of the segmentation sequences. The expert path (CD, TH, and then PU) is the most frequent path, but other paths are followed when needed. This is
consistent with what is expected from the optimization procedure, which adapts the path when needed, according to the data. There are also less unfinished paths with one
or two missing structures, which indicates that the followed path allows a better segmentation.
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caudate nucleus may be segmented later on in the optimized se-
quence, and is then likely to be better segmented. The mean dis-
tances obtained for the other structures are similar for all paths,
with no significant difference.

Table 1 also presents the total number of segmentations per
structure over the 30 healthy cases of the database. There is a sim-
ilar number of caudate nucleus segmentations for all paths. How-
ever, there are more thalamus and putamen segmentations (and
particularly on the right side without any evident reason). The
number of caudate nucleus segmentations is related to the order
followed by the expert path, i.e. the caudate nucleus is always seg-
mented in first position. In this case, there is no backtrack of the
process, thus an erroneous segmentation of the caudate nucleus
prevents the segmentation of the other structures but cannot be
discarded (note that in the latter case, the erroneous segmentation
appears in the number of segmentations of the caudate nucleus).
Fig. 20 presents an example of an erroneous segmentation.

For each image the average value of the mean distances com-
puted for all structure segmentations is calculated. The mean of
these values over the 44 images of the database is presented in
Fig. 21 for the three methods. On the left, the average mean dis-
tances are represented with box plots (1: expert path, 2: optimized
path, 3: optimized path with belief revision). The upper quartile and
largest observation are higher, while the lower quartile and the
median values are similar. Extremal values are also higher with
the expert path. This indicates that the segmentation with an opti-
mized path allows us to correct the largest errors of segmentation
but does not improve the other segmentations. The optimized path
allows us to detect recognition errors and inconsistencies and to
propose a strategy to avoid errors. Note that the precision of the seg-
mentation of a structure mainly depends on the chosen approach for
the final segmentation (here the deformable model proposed in Ref.
[2]). On the right of Fig. 21, the results show a better average numer-
ical evaluation when the segmentation is performed with an opti-
mized path than with an expert path. The belief revision step
further improves the results, but only slightly in average.

Considering the whole data base (healthy and pathological
cases), the number of segmented structures is larger with our
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sequential segmentation framework with an optimized sequence
than with the same framework but following an expert path. This
result shows that the dynamic path selection allows us to recog-
nize and segment more structures. Furthermore, no false positives
(misrecognized structures) appear in the results. A poor radiomet-
ric estimation may lead to segment two structures as only one and
thus the recognition maybe partially wrong. But the spatial consis-
tency criterion allows avoiding such errors, when applied with a
large enough threshold value. Table 2 presents these values as well
as the number of path changes needed to achieve the segmenta-
tion. The criterion evaluating the spatial consistency is more often
used than the other criteria. This shows the relevance of this crite-
rion. On the one hand, this result is consistent with the important
usage of spatial information to guide the process of each struc-
ture’s segmentation. On the other hand, we choose not to rely on
intrinsic features of the structure to segment and thus the saliency
criterion used to evaluate the segmentation result is less relevant.

Fig. 22 presents the different sequences of segmentation with
the number of occurrences of each sequence, at the end of the seg-
mentation process, i.e. the final path, after potential backtracking,
on healthy and pathological cases. The repartition shows that the
most frequent path is the expert path, but other paths are also
used. This is an expected result for our approach.

7.4. Influence of radiometric estimation

In order to estimate the influence of the radiometric estimation
on the segmentation, experiments have been conducted with
parameters estimated on different sets of images. The first couple
of parameters (a,b), called ‘‘exact’’, is computed on the same image
with a manual segmentation. The second experiment is achieved
with the values presented in Section 5, where the learning
OASIS 01 OASIS 0

(a) Exact

(b) Three

learning sets

(c) Poupon’s

values [37]

Fig. 23. Comparison of sequential segmentations with radiometric estimation learned
database and one pathological case, with a ring-shaped tumor). (a) Segmentation resul
clustered database and used in our other experiments. (c) Sequential segmentation usin
results. The a parameter is related to the mean of the intensity values and it is importan
from the other structures.
database is separated in three sets: IBSR, OASIS and pathological
cases. The third experiment uses the parameters described in Ref.
[37]. Remember that the parameters a and b allow defining the
average intensity value of a structure and the standard deviation
respectively, as functions of the intensity of white and gray matter.

Examples from the resulting segmentations are presented in
Fig. 23. The segmentations achieved with the ‘‘exact’’ parameters
are not the best segmentations. The parameters learned on three
subsets of our database (following a leave-one-out procedure) give
the best results for the four cases presented here. However, the dif-
ferences between segmentations of the same image with different
radiometric estimations show the influence of these parameters.

7.5. Influence of the learning of spatial relation parameters

Finally, we propose to analyze the influence of the parameters
of the spatial relations by applying the proposed approach to the
same image and using the same segmentation scheme (with an
optimized path without belief revision), but with different param-
eters for the spatial relations. The purpose of this experiment is to
establish whether the results are improved when the spatial rela-
tions are more precise, or if the imprecision of the spatial relation
does not impact the result.

Three experiments are carried out with parameters learned on
different sets of images. The default set (denoted by all) is the
whole learning database (44 images) including both healthy and
pathological cases (with a leave-one-out procedure). A smaller
and more homogeneous set (denoted by healthy) is composed by
the 30 healthy images only (with a leave-one-out procedure too).
Finally, an experiment denoted by exact is achieved with parame-
ters derived from the manual segmentation of the image, i.e. exact
parameters for this image.
2 IBSR 2 ring

on different sets of images (two examples of the IBSR data base, two of the OASIS
ts obtained with ‘‘exact’’ parameters. (b) Results using parameters computed on a
g the parameters proposed in Ref. [37]. The ‘‘exact’’ parameters do not give the best
t that this estimation reflects the intensity of the structure but also discriminates it
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(a) Exact

(b) Healthy

(c )All

Fig. 24. Comparison of sequential segmentations with learning of the spatial relation parameters on different sets of images. (a) The parameters are ‘‘exact’’, i.e. learned on
the segmented image only. (b) The parameters are learned on all healthy cases of the database (homogeneous set). (c) The parameters are learned on the whole database
(healthy and pathological cases). This experiment shows that more precise spatial information does not necessarily provide better results, and even sometimes worse. The
intrinsic imprecision of the spatial relations provides the necessary flexibility for spatial reasoning.
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Slices from the resulting segmentations are presented in Fig. 24.
The first row presents the segmentation obtained with exact
parameters and these segmentations are sometimes improved in
the other experiments. The segmentation results are not improved
when using more precise spatial relations. On the contrary, the lar-
ger learning set, which allows a more flexible spatial reasoning,
provides the best results. This is a very encouraging result, since
it shows that the variability is well taken into account by the pro-
posed approach.
8. Conclusion

In this paper we addressed two important problems in sequen-
tial segmentation. The first one is related to the choice of the order
in which structures are segmented. To solve this problem, we pro-
posed to optimize a criterion combining saliency information com-
puted in each image to be processed and generic structural
information about the spatial relations between structures, derived
from an anatomical model. This contribution extends the frame-
work developed in Ref. [2], where the segmentation order was
fixed in an ad-hoc way and was the same for all processed cases.
The proposed optimization procedure allows reducing the number
of segmentation failures by adapting the segmentation order to the
specificities of each image.

Furthermore, the proposed criterion involves a number of
parameters, related to the definition of spatial relations and to
radiometric information. We have proposed a learning procedure
to estimate these parameters, thus avoiding tedious manual fine
tuning.

The second problem related to sequential segmentation is the
influence of a potential error on the subsequent steps of the pro-
cess. We proposed an original method to control the result ob-
tained at each step, and its consistency with respect to the
model. Additionally, we developed a backtracking procedure,
which allows, in case an error is detected, to change the segmenta-
tion order and to choose another strategy. From an algorithmic
point of view, the efficiency of the proposed method is ensured
by a tree structure which keeps trace of all segmentations and al-
ready explored paths. The experiments have shown that this con-
trol and backtracking process is efficient and allows segmenting
more structures in a correct and consistent way.

In the proposed method, some steps could be easily replaced by
other ones. For instance the final segmentation, which follows the
approach in Ref. [2], could be replaced by another method such as
minimal surface or level sets for instance. Similarly, the computa-
tion of saliency could include other features.

The proposed approach shows that image analysis and interpre-
tation can benefit from visual attention models. The proposed opti-
mization relies on a structural model involving spatial relations,
which implies that some expert prior knowledge is available to
build this model. This is the case for the considered example in
brain imaging. Further work could investigate this type of ap-
proaches in the case of imprecise and/or incomplete knowledge
description of the scene.
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