## Temporal and Spatial Reasoning

#### Isabelle Bloch

LIP6, Sorbonne Université - LTCI, Télécom Paris





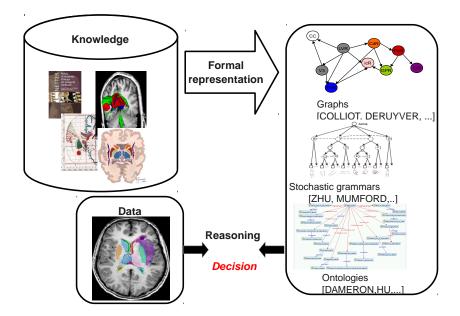


 $is a belle.bloch @sorbonne-universite.fr, \ is a belle.bloch @telecom-paris.fr \\$ 

# Spatial Reasoning

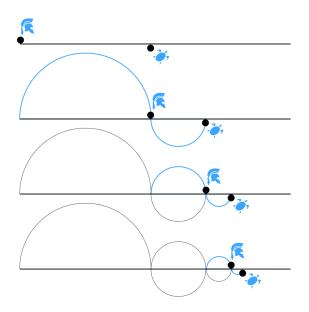
Knowledge representation and reasoning on spatial entities and spatial relationships

- largely developed in the artificial intelligence community
  - mainly topological relations
  - formal logics (ex: mereotopology)
  - inference
- less developed in image interpretation
  - need for imprecise knowledge representation
  - (semi-)quantitative framework (⇒ numerical evaluation)
  - examples: structural recognition in images under imprecision
- main ingredients:
  - knowledge representation (including spatial relations)
  - imprecision representation and management
  - fusion of heterogeneous information
  - reasoning and decision making



## Philosophy

- From Pythagoras (c. 570-495 BC) to Zeno (c. 490-430 BC): concept of space linked to the first developments in arithmetics and Pythagorian geometry - Problem of infinitely subdivision possibility.
- Descartes (1596-1650): spatial extension is specific to material entities, governed by the only laws of mechanics.
- Newton (1643-1727): notion of absolute space.
- Hume (1711-1776): space reduced to a pure psychological function.
- Leibniz (1646-1716): space cannot be an absolute reality, motion and position are real and detectable only in relation to other objects, not in relation to space itself.
- Kant (1724-1804): objectivity of space.



- Poincaré (1854-1912): empiricist point of view where spatial knowledge is mainly derived from motor experience. Relativity of space.
- Bergson (1859-1941): a position in the space can be considered as an instantaneous cut of the movement, but the movement is more that a sum of positions in the space.
- Einstein (1879-1955): geometry is linked to the sensible and perceptible space. The geometrical configuration of the world itself becomes relative.
- Purely philosophical views of space developed by the phenomenologists and the existentialists.
- Reichenbach (1891-1953): geometry as a theory of relations.

### Linguistics

- Rich variety of lexical terms for describing spatial location of entities.
- Concern all lexical categories (nouns, verbs, adjectives, adverbs, prepositions).
  - French, and other Romance languages, shows a typological preference for the lexicalization of the path in the main verb.
  - In Germanic and Slavic languages, the path is rather encoded in satellites associated to the verb (particle or prefix).
- Source of inspiration of many works on qualitative spatial information representation and qualitative spatial reasoning.
- Asymmetry, importance of reference, of context, of functional properties of the considered physical entities
- Imprecision (too precise statements can even become inefficient if they make the message too complex).

### Human perception: example of distance

- Purely spatial measures, in a geometric sense, give rise to "metric distances", and are related to intrinsic properties of the objects.
- Temporal measures lead to distances expressed as travel time, and can be considered of extrinsic type, as opposed to the previous class.
- Economic measures, in terms of costs to be invested, are also of extrinsic type.
- Perceptual measures lead to distances of deictic type; they are related to an external point of view, which can be concrete or just a mental representation, which can be influenced by environmental features, by subjective considerations, leading to distances that are not necessarily symmetrical.
- Influence of other objects.

Cognitive understanding of a spatial environment is issued from two types of processes:

- route knowledge acquisition (first acquired during child development), which consists in learning from sensori-motor experience (i.e. actual navigation) and implies an order information between visited landmarks,
- survey knowledge acquisition, from symbolic sources such as maps, leading to a global view ("from above") including global features and relationships, which is independent of the order of landmarks.

Neuro-imaging:

- a right hippocampal activation can be observed for both mental navigation and mental map tasks,
- a parahippocampal gyrus activation is additionally observed only for mental navigation, when route information and object landmarks have to be incorporated.



Internal representation of space in the brain:

- egocentric representations,
- allocentric representations ("map in the head").

Intensively used in several works in the modeling and conception of geographic information systems, and in mobile robotics.

I. Bloch

Symbolic Al

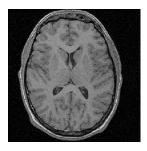
## Spatial reasoning formalisms

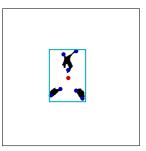
- Quantitative
- Qualitative (QSR)
- Fuzzy representations and reasoning: semi-quantitative / semi-qualitative approches
- Spatial entities
- Spatial relations
- Real world problems: dealing with imprecision and uncertainty.

Common to several representation and reasoning frameworks, used in the next parts of the course.

## Spatial entities

- Regions, fuzzy regions.
- Key points.
- Simplified regions (centroid, bounding box...).
- Abstract representations (e.g. in mereotopology, without referring to points, formulas in some logics...).





## Spatial relations

- Useful... (see e.g. Freeman 1975, Kuipers 1978...).
- Structural stability (more than shape, size, absolute position).
- Different types (binary / n-ary, simple / complex, well-defined / vague).



I. Bloch

## Quantitative representations

- Precisely defined objects.
- Computation of well defined relations.
- Many limitations:
  - on the objects,
  - on the relations,
  - on the type of representations,
  - for reasoning.

But does not always match the usual way of reasoning (e.g. to the north, closer...).

## Qualitative / symbolic representations

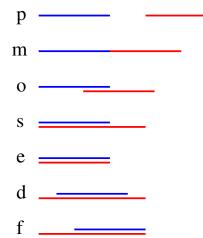
- Allen's intervals (temporal reasoning): 13 relations.
- Rectangle calculus (Allen on each axis): 169 relations.
- Cube calculus...
- Cardinal directions: 9 positions.
- Region Connection Calculus (RCC), mereotopology (based on connection and parthood predicates).
- Extensions to objects with broad or imprecise boundaries.
- Spatial logics.

#### Main features:

- Formal logics (propositional, first order, modal...).
- Compromise between expressiveness, completeness with respect to a class of situations, and complexity.
- Reasoning: inference, satisfiability, composition tables, CSP...

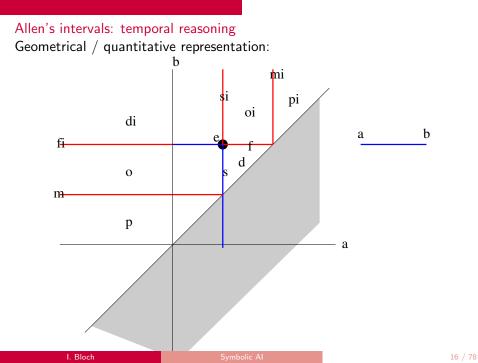
#### Allen's intervals: temporal reasoning

13 basic relations:



#### Reasoning: based on geometrical or latticial representations.

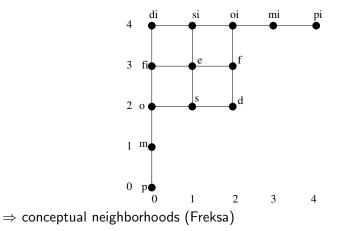
I. Bloch



#### Allen's intervals: temporal reasoning

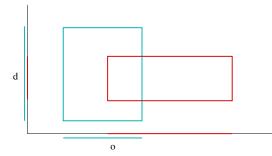
Qualitative representation: lattice:



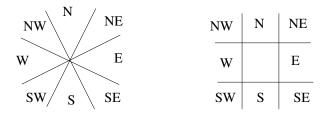


Allen's intervals: temporal reasoning Extensions: rectangle, cube algebra

- Allen's interval in each direction
- 2D (rectangles):  $13^2 = 169$  relations
- 3D (cubes): 13<sup>3</sup> = 2197 relations
- $\blacksquare \Rightarrow$  high complexity, and fixed shaped objects



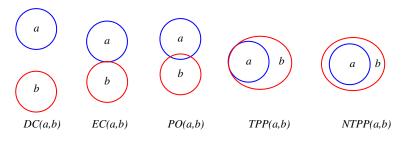
Cardinal directions (Frank, Egenhofer, Ligozat) Qualitative directions: N, NE, E, SE, S, SW, W, NW Cone-based Projection-based



How to deal with complex shapes? Only few compositions can be exactly determined. RCC: Region Connection Calculus (Randell, Cui, Cohn - Vieu...)

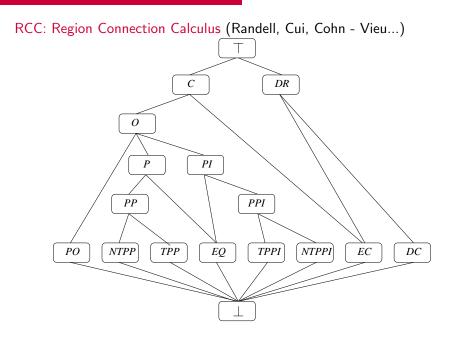
- Spatial entities, defined in a qualitative way.
- No reference to points.
- Connection predicate C.
- Parthood predicate P:

$$P(x,y): \forall z, C(z,x) \rightarrow C(z,y)$$



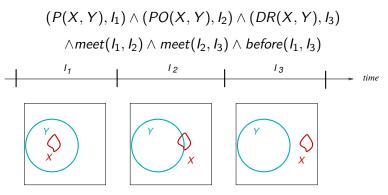
#### RCC: Region Connection Calculus (Randell, Cui, Cohn - Vieu...)

| DC(x,y)    | x is disconnected from $y$                  | $\neg C(x,y)$                                   |
|------------|---------------------------------------------|-------------------------------------------------|
| P(x,y)     | x is a part of y                            | $\forall z, C(z, x) \rightarrow C(z, y)$        |
| PP(x, y)   | x is a proper part of $y$                   | $P(x,y) \wedge \neg P(y,x)$                     |
| EQ(x, y)   | $\mathbf{x}$ is identical with $\mathbf{y}$ | $P(x,y) \wedge P(y,x)$                          |
| O(x,y)     | x overlaps y                                | $\exists z, P(z, x) \land P(z, y)$              |
| DR(x, y)   | x is discrete from y                        | $\neg O(x, y)$                                  |
| PO(x, y)   | x partially overlaps $y$                    | $O(x,y) \wedge \neg P(x,y) \wedge \neg P(y,x)$  |
| EC(x, y)   | x is externally connected                   | $C(x,y) \wedge \neg O(x,y)$                     |
|            | to y                                        |                                                 |
| TPP(x, y)  | x is a tangential proper                    | $PP(x,y) \land \exists z[EC(z,x) \land ]$       |
|            | part of <i>y</i>                            | EC(z, y)                                        |
| NTPP(x, y) | x is a non tangential                       | $PP(x,y) \land \neg \exists z [EC(z,x) \land ]$ |
|            | proper part of y                            | EC(z, y)]                                       |



Qualitative trajectory calculus (Cohn et al.)

- Extension of RCC to take time into account (dynamic scenes).
- RCC + Allen
- Example:
  - X, Y objects
  - *I<sub>i</sub>* time intervals



#### Adding shape

- Varzi: predicates for part, hole, fill, convex hull.
- Dugat: mereogeometry based on spheres (congruence, distance, order...).

## Modal logics of space

#### Topology:

- □A: A is locally true (A is true at point x iff A is true in a neighborhood of x).
- ◊A = ¬□¬A: A is true at x iff A is true at least one point of the neighborhood of x.
- Reasoning axioms and inference rules of S4:

$$A \to (B \to A)$$

$$(A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$(\neg A \to \neg B) \to (B \to A)$$

$$\Box (A \to B) \to (\Box A \to \Box B)$$

$$\Box A \to A$$

$$\Box A \to \Box \Box A$$

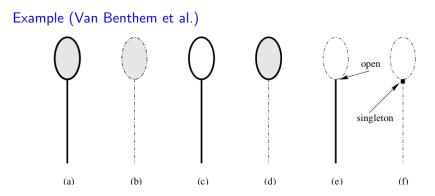


Figure 1.1. Each modal formula identifies a region in a topological space. (a) A spoon, p. (b) The container part of the spoon,  $\Box p$ . (c) The boundary of the spoon,  $\Diamond p \land \Diamond \neg p$ . (d) The container part of the spoon with its boundary,  $\Diamond \Box p$ . (e) The handle of the spoon,  $p \land \neg \Diamond \Box p$ . In this case the handle does not contain the junction handle-container point. (f) The junction handle-container point of the spoon,  $\Diamond \Box p \land \Diamond (p \land \neg \Diamond \Box p)$ : a singleton in the topological space.

#### Other spatial logics:

- Translation of RCC into modal logics.
- Logics of places ( $\Box$  = everywhere,  $\Diamond$  = somewhere).
- Modal logics of proximity ( $\Box A =$  everywhere close to A).
- Modal logics of distance (□<sup>≤a</sup> = everywhere in a neighborhood of radius a).
- Logics of inclusion and contact (inference in GIS).
- Modal logics of geometry, with modalities for points and for lines (affine, projective, parallelism...).

#### RCC-8 and modal logic

- $\Box X: X$  is valid at any point.
- $\Diamond X$ : there exists a point where X is valid.

• 
$$C(X,Y) \equiv \Diamond (X \land Y)$$

$$DC(X,Y) \equiv \Box(\neg X \lor \neg Y)$$

$$P(X,Y) \equiv \Box(X \to Y)$$

• 
$$O(X, Y) \equiv \Diamond (i(X) \land i(Y)) \ (i = \text{interior})$$

•  $TP(X, Y) \equiv \Box(X \to Y) \land \Diamond(X \land c(\neg Y)) \ (c = \text{closure})$ 

...

# A few important issues

- Context
- Representation issues
- Reasoning (inference, satisfiability, decidability, CSP...)
- Complexity
- Applications

State of the art:

- Very few applications
- Focus on topology
- Almost nothing on metric relations
- Almost nothing on uncertainty

#### Allen intervals:

|              | р       | m       | 0       | F       | D       | S       | е   | S       | d       | f       | 0       | М       | Р       |
|--------------|---------|---------|---------|---------|---------|---------|-----|---------|---------|---------|---------|---------|---------|
| $\mathbf{p}$ | (p)     | (p)     | (p)     | (p)     | (p)     | (p)     | (p) | (p)     | (pmosd) | (pmosd) | (pmosd) | (pmosd) | full    |
| m            | (p)     | (p)     | (p)     | (p)     | (p)     | (m)     | (m) | (m)     | (osd)   | (osd)   | (osd)   | (Fef)   | (DSOMP) |
| 0            | (p)     | (p)     | (pmo)   | (pmo)   | (pmoFD) | (o)     | (o) | (oFD)   | (osd)   | (osd)   | concur  | (DS0)   | (DSOMP) |
| F            | (p)     | (m)     | (o)     | (F)     | (D)     | (o)     | (F) | (D)     | (osd)   | (Fef)   | (DSO)   | (DS0)   | (DSOMP) |
| D            | (pmoFD) | (oFD)   | (oFD)   | (D)     | (D)     | (oFD)   | (D) | (D)     | concur  | (DSO)   | (DSO)   | (DS0)   | (DSOMP) |
| s            | (p)     | (p)     | (pmo)   | (pmo)   | (pmoFD) | (s)     | (s) | (seS)   | (d)     | (d)     | (dfO)   | (M)     | (P)     |
| е            | (p)     | (m)     | (o)     | (F)     | (D)     | (s)     | (e) | (S)     | (d)     | (f)     | (0)     | (M)     | (P)     |
| s            | (pmoFD) | (oFD)   | (oFD)   | (D)     | (D)     | (seS)   | (S) | (S)     | (df0)   | (0)     | (0)     | (M)     | (P)     |
| d            | (p)     | (p)     | (pmosd) | (pmosd) | full    | (d)     | (d) | (dfOMP) | (d)     | (d)     | (dfOMP) | (P)     | (P)     |
| f            | (p)     | (m)     | (osd)   | (Fef)   | (DSOMP) | (d)     | (f) | (OMP)   | (d)     | (f)     | (OMP)   | (P)     | (P)     |
| 0            | (pmoFD) | (oFD)   | concur  | (DS0)   | (DSOMP) | (dfO)   | (0) | (OMP)   | (dfO)   | (0)     | (OMP)   | (P)     | (P)     |
| М            | (pmoFD) | (seS)   | (df0)   | (M)     | (P)     | (dfO)   | (M) | (P)     | (df0)   | (M)     | (P)     | (P)     | (P)     |
| Ρ            | full    | (dfOMP) | (dfOMP) | (P)     | (P)     | (dfOMP) | (P) | (P)     | (dfOMP) | (P)     | (P)     | (P)     | (P)     |

full=(pmoFDseSdfOMP) and concur=(oFDseSdfO)

From http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html

### Composition tables

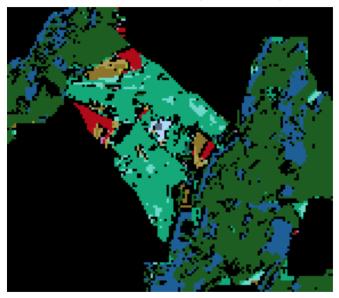
#### RCC-8 :

| 0     | DC EC               |                      | PO                                  | TPP               | NTPP                           | TPPi                 | NTPPi               | EQ    |
|-------|---------------------|----------------------|-------------------------------------|-------------------|--------------------------------|----------------------|---------------------|-------|
| DC    | *                   | DC,EC,PO,TPP,NTPP    | DC,EC,PO,TPP,NTPP DC,EC,PO,TPP,NTPP |                   | DC,EC,PO,TPP,NTPP              | DC                   | DC                  | DC    |
| EC    | DC,EC,PO,TPPi,NTPPi | DC,EC,PO,TPP,TPPi,EQ | DC,EC,PO,TPP,NTPP                   | EC,PO,TPP,NTPP    | PO,TPP,NTPP                    | DC,EC                | DC                  | EC    |
| PO    | DC.EC.PO,TPPI,NTPPi | DC,EC,PO,TPPi,NTPPi  | *                                   | PO, TPP, NTPP     | PO,TPP,NTPP                    | DC.EC.PO.TPPI.NTPPI  | DC,EC,PO,TPPi,NTPPi | PO    |
| TPP   | DC                  | DC,EC                | DC,EC,PO,TPP,NTPP                   | TPP,NTPP          | NTPP                           | DC,EC,PO,TPP,TPPI,EQ | DC,EC,PO,TPPi,NTPPi | TPP   |
| NTPP  | DC                  | DC                   | DC,EC,PO,TPP,NTPP                   | NTPP              | NTPP                           | DC,EC,PO,TPP,NTPP    | *                   | NTPP  |
| тррі  | DC,EC,PO,TPPi,NTPPi | EC,PO,TPPi,NTPPi     | PO, TPPI, NTPPi                     | PO, TPP, TPPi, EQ | PO,TPP,NTPP                    | TPPi,NTPPi           | NTPPi               | TPPi  |
| NTPPi | DC.EC.PO,TPPI,NTPPi | PO, TPPI, NTPPI      | PO, TPPI, NTPPI                     | PO, TPPI, NTPPi   | PO, TPP, NTPP, TPPI, NTPPI, EQ | NTPPI                | NTPPi               | NTPPi |
| EQ    | DC                  | EC                   | PO                                  | TPP               | NTPP                           | TPPi                 | NTPPi               | EQ    |

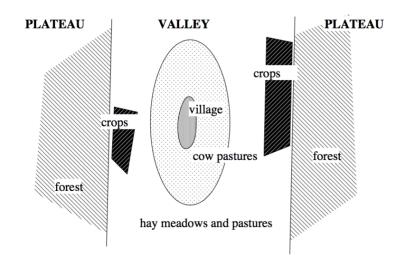
From wikipedia

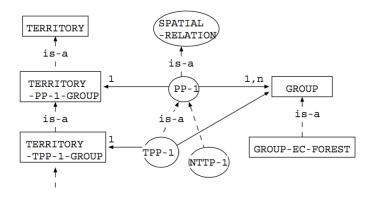
- Ontologies and description logics.
- Graph-based reasoning.
- Grammars.
- Formal concept analysis.
- Decision trees.
- Constraint Satisfaction Problem.
- Relational algebras on temporal or spatial configurations.
- Graphical models.

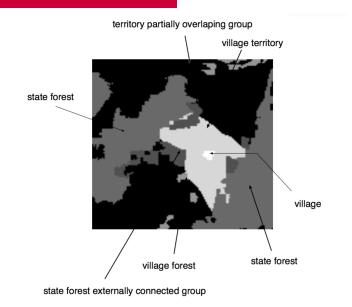
### Example using RCC: region identification (Le Ber et al.)



Symbolic AI







F-ILOT - F-ILOTLIM - F-ILOTECDOM - F-POCOM - F-ECDOM - F-ENTREDOM

Symbolic AI

# Semi-quantitative spatial reasoning: fuzzy approaches

- Limitations of purely qualitative reasoning
- Interest of adding semi-quantitative extension to qualitative value for deriving useful and practical conclusions
- Limitations of purely quantitative representations in the case of imprecise statements, knowledge expressed in linguistic terms, etc.
- Integration of both quantitative and qualitative knowledge using semi-quantitative (or semi-qualitative) interpretation of fuzzy sets
- Freeman (1975): fuzzy sets provide computational representation and interpretation of imprecise spatial constraints, expressed in a linguistic way, possibly including quantitative knowledge
- Granularity, involved in:
  - objects or spatial entities and their descriptions
  - types and expressions of spatial relations and queries
  - type of expected or potential result

# Motivation: model-based recognition and spatial reasoning

- representation of imprecision
- spatial relations as structural information
  - topological relationships (set relations, adjacency)
  - distances
  - relative directional relationships
  - more complex relations (between, along...)
- two classes of relations
  - well defined in the crisp case (adjacency, distances...)
  - vague even in the crisp case (directional relationships...)
- fusion of several and heterogeneous pieces of knowledge and information
- $\Rightarrow$  Fuzzy set theory, mathematical morphology

- objects (no clear boundaries, coarse segmentation...)
- relations (ex: left of, quite close)
- type of knowledge available (ex: the caudate nucleus is close to the lateral ventricle)
- question to be answered (ex: go towards this object while remaining at some security distance)

# Types of representations: example of distances

- number in  $\mathbb{R}^+$  (or in [0,1])
- interval
- fuzzy number, fuzzy interval
- Rosenfeld:
  - distance density: degree to which the distance is equal to n
  - distance distribution: degree to which the distance is less than n
- linguistic value
- logical formula

```
\Rightarrow \text{ unifying framework of fuzzy set theory}
d_{min} = 17, d_{Haus} = 80
```

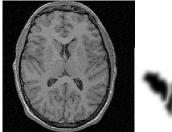
# Fuzzy sets in a nutshell (Zadeh, 1965)

- Space S (image space, space of characteristics, etc.).
- Fuzzy set:  $\mu : S \rightarrow [0,1] \mu(x) =$  membership degree of x to  $\mu$ .
- Set theoretical operations: complementations, conjunctions (t-norms), disjunctions (t-conorms).
- Logic operators, aggregation and fusion operators...

## Example: spatial fuzzy set

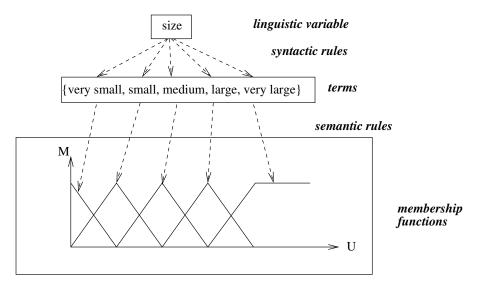
• S:  $\mathbb{R}^3$  or  $\mathbb{Z}^3$  in the digital case.

•  $\mu : S \to [0,1]$  -  $\mu(x)$  = degree to which x belongs to the fuzzy object.





# Linguistic variable



# Mathematical morphology

Dilation: operation in complete lattices that commutes with the supremum.

Erosion: operation in complete lattices that commutes with the infimum.

 $\Rightarrow$  applications on sets, fuzzy sets, functions, logical formulas, graphs, etc.

## Using a structuring element:

dilation as a degree of conjunction: δ<sub>B</sub>(X) = {x ∈ S | B<sub>x</sub> ∩ X ≠ ∅},
 erosion as a degree of implication: ε<sub>B</sub>(X) = {x ∈ S | B<sub>x</sub> ⊆ X}.



A lot of other operations...

I. Bloch

Dilation as degree of intersection:

$$D_{\nu}(\mu)(x) = \sup\{t[
u(y-x),\mu(y)], y \in \mathcal{S}\}$$

Erosion as degree of inclusion:

$$E_{\nu}(\mu)(x) = \inf\{I[\nu(y-x), \mu(y)], y \in \mathcal{S}\}$$

I from a t-conorm T or by residuation from the t-norm t

Opening and closing by composition

Similar properties as in classical mathematical morphology

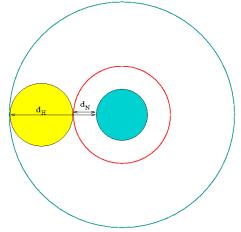
Fuzzy sets  $\rightarrow$  relations become a matter of degree

- Set theoretical relations
- Topology: connectivity, connected components, neighborhood, boundaries, adjacency
- Distances
- Relative direction
- More complex relations: between, along, parallel, around...

Most of them can be defined from mathematical morphology.

# Distances between fuzzy sets: morphological approach

Expression of distances (minimum, Hausdorff...) in morphological (i.e. algebraic) terms  $\Rightarrow$  easy translation to the fuzzy case



$$d_N(X,Y) = \inf\{n \in \mathbb{N}, X \cap D^n(Y) \neq \emptyset\} = \inf\{n \in \mathbb{N}, Y \cap D^n(X) \neq \emptyset\}$$

Degree to which the distance between  $\mu$  and  $\mu'$  is less than *n* (distance distribution):

$$\Delta_N(\mu, \mu')(n) = f[\sup_{x \in \mathcal{S}} t[\mu(x), D_{\nu}^n(\mu')(x)], \sup_{x \in \mathcal{S}} t[\mu'(x), D_{\nu}^n(\mu)(x)]]$$

Hausdorff distance: similar equations

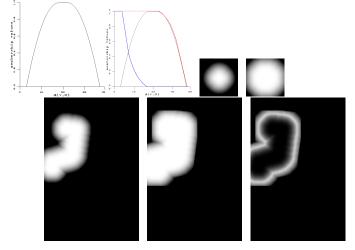
$$d_N(X,Y) = n \Leftrightarrow D^n(X) \cap Y \neq \emptyset$$
 and  $D^{n-1}(X) \cap Y = \emptyset$   
 $d_N(X,Y) = 0 \Leftrightarrow X \cap Y \neq \emptyset$ 

Degree to which the distance between  $\mu$  and  $\mu'$  is equal to *n* (distance density):

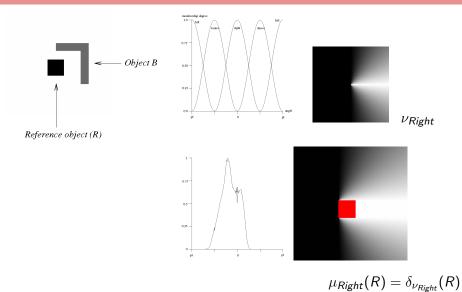
$$\delta_{N}(\mu, \mu')(n) = t[\sup_{x \in S} t[\mu'(x), D_{\nu}^{n}(\mu)(x)], c[\sup_{x \in S} t[\mu'(x), D_{\nu}^{n-1}(\mu)(x)]]]$$
$$\delta_{N}(\mu, \mu')(0) = \sup_{x \in S} t[\mu(x), \mu'(x)]$$

Hausdorff distance: similar equations

# Example: spatial representation of knowledge about distance



# Directional relations



I. Bloch

# Complex relations

## Example: the heart is between the lungs







# Reasoning with mathematical morphology

- Chaining operations (image interpretation, recognition)
- Fusion of spatial relations (ex: structural recognition)
- Links with logics
  - propositional logics:
    - elegant tools for revision, fusion, abduction
    - links with mereotology, "egg-yolk" structures, logics of distances, nearness logics, linear logics, logics of convexity...
  - modal logics:
    - $(\Diamond, \Box) = (\text{dilation, erosion})$
    - symbolic and qualitative representations of spatial relations
  - fuzzy logic

Structuring element *B*: relation between worlds Dilation:

$$\mathit{Mod}(\mathit{D}_{\mathcal{B}}(arphi)) = \{\omega \in \Omega \mid \mathcal{B}(\omega) \cap \mathit{Mod}(arphi) 
eq \emptyset\}$$

Erosion:

$$Mod(E_B(\varphi)) = \{\omega \in \Omega \mid B(\omega) \models \varphi\}$$

Structuring element B: accessibility relation  $R(\omega, \omega')$  iff  $\omega' \in B(\omega)$ 

$$\begin{split} \mathcal{M}, \omega \models \Box \varphi & \Leftrightarrow & \forall \omega' \in \Omega, \ \mathcal{R}(\omega, \omega') \Rightarrow \mathcal{M}, \omega' \models \varphi \\ & \Leftrightarrow & \{\omega' \in \Omega \mid \omega' \in \mathcal{B}(\omega)\} \models \varphi \\ & \Leftrightarrow & \mathcal{B}(\omega) \models \varphi \end{split}$$

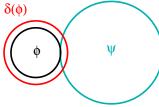
$$\begin{split} \mathcal{M}, \omega \models \Diamond \varphi & \Leftrightarrow \quad \exists \omega' \in \Omega, \; R(\omega, \omega') \; \text{et} \; \mathcal{M}, \omega' \models \varphi \\ & \Leftrightarrow \quad \{\omega' \in \Omega \mid \omega' \in B(\omega)\} \cap \textit{Mod}(\varphi) \neq \emptyset \\ & \Leftrightarrow \quad B(\omega) \cap \textit{Mod}(\varphi) \neq \emptyset \end{split}$$

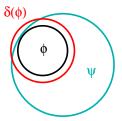
 $\Box \varphi \equiv E_B(\varphi) \qquad \Diamond \varphi \equiv D_B(\varphi)$ Spatial interpretation: restriction or necessary region / extension or possible region

I. Bloch

Example: logical expressions and links with mereotology

- Spatial entities represented as formulas.
- Structuring element: binary relationship between worlds, accessibility relation...
- Adjacency:  $\varphi \land \phi \to \bot$  and  $\delta \varphi \land \psi \not\to \bot$  and  $\varphi \land \delta \psi \not\to \bot$ .
- **Tangential part**:  $\varphi \to \psi$  and  $\delta \varphi \land \neg \psi \not\to \bot$ .
- Proper tangential part in mereotopology:
  - $TPP(\varphi, \psi) = P(\varphi, \psi) \land \neg P(\psi, \varphi) \land \neg P(\delta(\varphi), \psi).$





RCC expression for  $(\varphi = x, \psi = y)$ :  $TPP(x, y) = (P(x, y) \land \neg P(y, x)) \land \exists z [(C(z, x) \land \neg (\exists z', P(z', z) \land P(z', x)))) \land (C(z, y) \land \neg (\exists z', P(z', z) \land P(z', y)))]$ 

# Model based image understanding

## Models of various types:

- acquisition properties (geometry, noise statistics...)
- shape
- appearance
- spatial relations
- ...

## Important

- to use available knowledge
- to guide the image exploration, for segmentation, recognition, scene understanding
- to solve ambiguities
- to deal with imprecision

### Issues:

- semantic gap
- imprecisions and uncertainties
- pathological cases
- algorithms

Two main questions in structural recognition in images:

- given two objects (possibly fuzzy), assess the degree to which a relation is satisfied
- given one reference object, define the area of the space in which a relation to this reference is satisfied (to some degree)

## Example in brain imaging

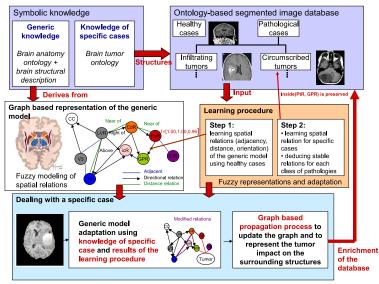
- Concepts:
  - **brain**: part of the central nervous system located in the head
  - caudate nucleus: a deep gray nucleus of the telencephalon involved with control of voluntary movement
  - glioma: tumor of the central nervous system that arises from glial cells

...

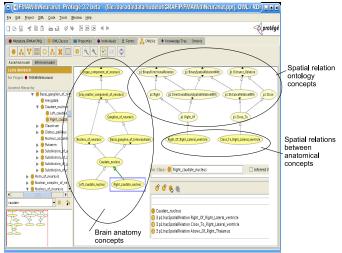
## Spatial organization:

- the left caudate nucleus is inside the left hemisphere
- it is close to the lateral ventricle
- it is outside (left of) the left lateral ventricle
- it is above the thalamus, etc.
- **...**
- Pathologies: relations are quite stable, but more flexibility should be allowed in their semantics

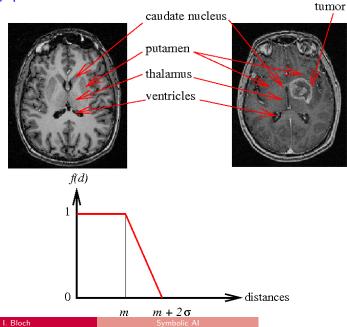
## Integration of ontologies, spatial relations and fuzzy models



# Ontology of the anatomy (FMA) enriched with an ontology of spatial relations



## Learning spatial relations

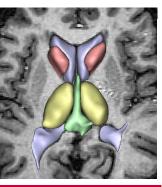


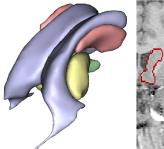
56 / 78

# Spatial reasoning for model-based recognition

Segmentation and recognition of some internal structures on a normal case (O. Colliot et al.):

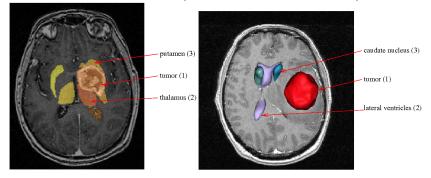
- fusion of spatial relations (given by the model) to previously recognized objects
- deformable model constrained by spatial relations

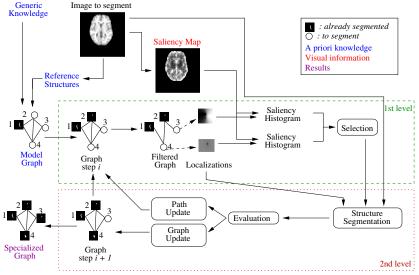






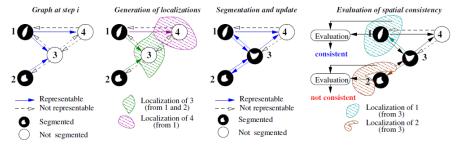
## Examples in pathological cases (H. Khotanlou, J. Atif, et al.)



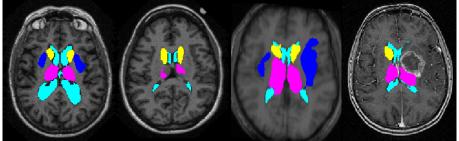


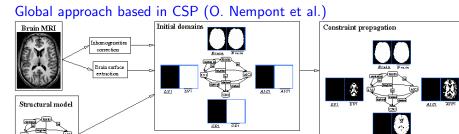
## Best segmentation path (G. Fouquier et al.)

# Best segmentation path (G. Fouquier et al.) Evaluation and backtracking



## Best segmentation path (G. Fouquier et al.) Some results





Domains obtained by the propagation algorithm

Barri

ALCI ALC

#### I. Bloch

Metric definition

Minimal surface extraction

LVI ZVI

Final segmentation

Symbolic A

CDI CDI

Select a constraint

associated operator

and compute the

AICI

CDI

until

convergence

CDI

Update

LVI

domains

Global approach based in CSP (O. Nempont et al.) Constraint Satisfaction Problem (CSP):

- Constraint network =  $(\chi, \mathcal{D}, \mathcal{C})$
- $\chi = \text{variables}$
- $\mathcal{D} = \mathsf{set}$  of associated domains
- $C = \text{constraints involving variables of } \chi$ , relations on the variable domains
- Propagation of constraints:
  - Locally consistent constraint if all values of the domains can satisfy the constraint.
  - Suppression of inconsistent values:  $(\chi, \mathcal{D}, \mathcal{C}) \rightarrow (\chi, \mathcal{D}', \mathcal{C})$
  - Propagator = operator reducing the domains according to a constraint.

## Global approach based in CSP (O. Nempont et al.)

- Variables = anatomical structures.
- Domain of a variable = interval of fuzzy sets  $[\underline{A}, \overline{A}]$ .

Example of constraint (1): inclusion

Associated propagator:

$$\frac{\langle A, B; (\underline{A}, \overline{A}), (\underline{B}, \overline{B}); C_{A,B}^{in} \rangle}{\langle A, B; (\underline{A}, \overline{A} \land \overline{B}), (\underline{B} \lor \underline{A}, \overline{B}); C_{A,B}^{in} \rangle}$$

Global approach based in CSP (O. Nempont et al.)

Example of constraint (2): directional relation

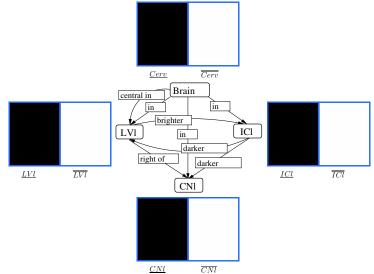
$$egin{aligned} \mathcal{C}_{\mathcal{A},B}^{\mathit{dir}\,
u} : & \mathcal{D}(\mathcal{A}) imes \mathcal{D}(\mathcal{B}) & o \{0,1\} \ & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & &$$

Associated propagator:

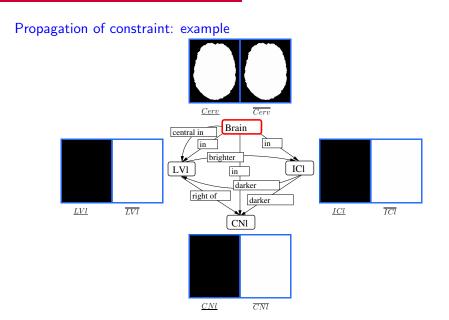
$$\frac{\langle A, B; (\underline{A}, \overline{A}), (\underline{B}, \overline{B}); C_{A,B}^{dir \, \nu} \rangle}{\langle A, B; (\underline{A}, \overline{A}), (\underline{B}, \overline{B} \land \delta_{\nu}(\overline{A})); C_{A,B}^{dir \, \nu} \rangle}$$

- Other constraints: distance, partition, connectivity, adjacency, volume, contraste...
- Ordering of the propagators and iteration application.

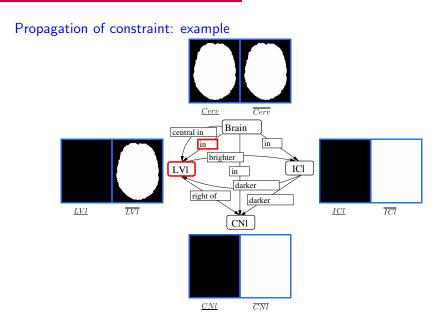
## Propagation of constraint: example



I. Bloch



#### I. Bloch



I. Bloch

#### Propagation of constraint: example Cerv $\overline{Cerv}$ Brain central in in in brighter LVI IC1 in darker right of darker LVl $\overline{LVl}$ $\underline{ICl}$ $\overline{ICl}$ N CNI CNl $\overline{CNl}$

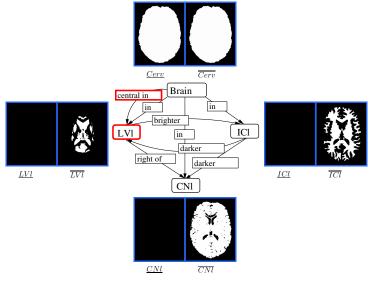
I. Bloch

#### Propagation of constraint: example Cerv $\overline{Cerv}$ Brain central in in in brighter LVI ICl in darker right of darker LVl $\overline{LVl}$ $\underline{ICl}$ $\overline{ICl}$ CNI

CNl

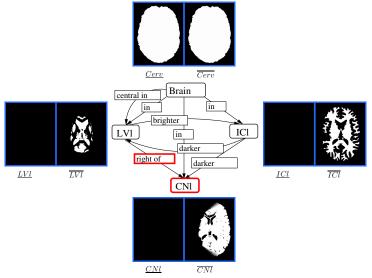
 $\overline{CNl}$ 

### Propagation of constraint: example

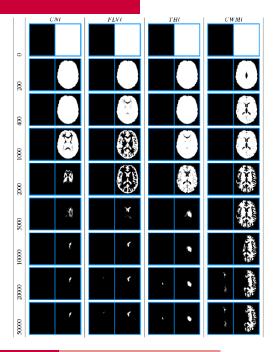


I. Bloch

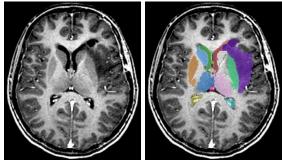
### Propagation of constraint: example

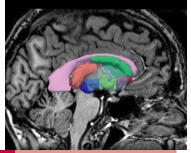


I. Bloch



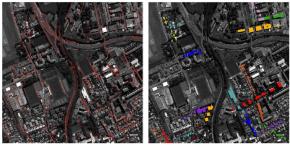
# Result: example





I. Bloch

# Examples in remote sensing (C. Vanegas)



(a)

(b)



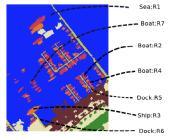
<mark>(c)</mark> Symbolic A

64 / 78

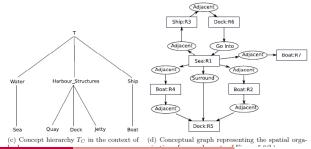
#### Examples in remote sensing (C. Vanegas)



(a) Example image.



(b) Labeled image: The blue regions represent the sea, the red and orange represent ships or boats and the yellow regions represent the docks.



I. Bloch

# Image understanding as an abduction problem



#### Formulation in DL:

- Knowledge base *K*.
- TBox *T*, *m<sub>i</sub>* concepts defined in *T*.

ABox *A*, such 
$$\forall a \in A$$
,  $\mathcal{K} \not\models \neg a$ .

■ ABox Abduction Problem ⟨K, A⟩: finding a set of assertions γ such that K ∪ γ ⊨ A.

Link between FCA and DL: semantic context  $\mathbb{K}_T = (G, M, I)$  defined as:

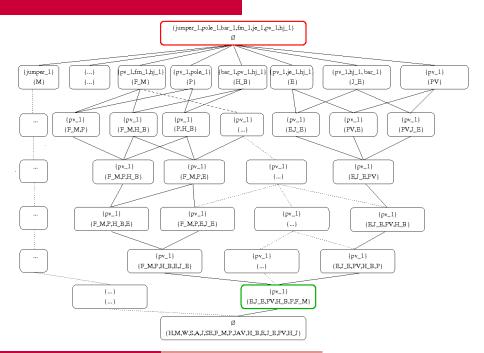
$$G = \{ (\mathcal{I}, d) \mid \mathcal{I} \text{ is a model of } T \text{ and } d \in \Delta^{\mathcal{I}} \}$$
  
$$M = \{ m_1, \dots, m_n \}$$
  
$$I = \{ ((\mathcal{I}, d), m) \mid d \in m^{\mathcal{I}} \}$$

#### Example Tbox:

|        | Human                           |
|--------|---------------------------------|
|        | Human                           |
| ≡      | Human 🗆                         |
|        | $\exists has Profession. Sport$ |
|        | Athlete □                       |
|        | ∃use.SportEquipment             |
|        | SportEquipmenent                |
| $\Box$ | SportEquipment                  |
| $\Box$ | SportEquipment                  |
| $\Box$ | SportEquipment                  |
| $\Box$ | Event □                         |
|        | ∃hasPart.Jumper □               |
| $\Box$ | Jumping_Event □                 |
|        | ∃hasPart.Pole □                 |
|        | ∃hasPart.Horizontal_Bar ⊓       |
|        | ∃hasPart.Foam_Mat               |
| $\Box$ | Jumping_Event ⊓                 |
|        | ∃hasPart.Horizontal_Bar ⊓       |
|        | ∃hasPart.Foam_Mat               |
|        |                                 |

#### Semantic context:

| Kathletic | Human | Man | Woman | Athlete | Jumper | SportEquipment | Foam_Mat | Pole | Javelin | Horizontal_bar | Event | Jumping_Event | Pole_Vault | High_Jump |
|-----------|-------|-----|-------|---------|--------|----------------|----------|------|---------|----------------|-------|---------------|------------|-----------|
| m_1       | Х     | X   |       |         |        |                |          |      |         |                |       |               |            |           |
| jumper_1  | Х     | X   |       | Х       | Х      | Х              |          |      |         |                |       |               |            |           |
| pole_1    |       |     |       |         |        | Х              |          | Х    |         |                |       |               |            |           |
| bar_1     |       |     |       |         |        | X              |          |      |         | Х              |       |               |            |           |
| fm_1      |       |     |       |         |        | X              | Х        |      |         |                |       |               |            |           |
| je_1      |       |     |       |         | Х      | X              |          |      |         |                | Х     | Х             |            |           |
| jav_1     |       |     |       |         |        | Х              |          |      | Х       |                |       |               |            |           |
| pv_1      |       |     |       |         | Х      | Х              | Х        | Х    |         | Х              | Х     | Х             | Х          |           |
| hj_1      |       |     |       |         | Х      | Х              | Х        |      |         | Х              | Х     | Х             |            | Х         |

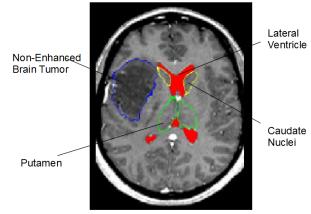


I. Bloch

Abox: {*bar*<sub>1</sub> : *Horizontal\_Bar*, *fm*<sub>1</sub> : *Foam\_Mat*, *pole*<sub>1</sub> : *Pole*, *je*<sub>1</sub> : *Jumping\_Event*}.

An explanation  $\gamma$  could be { $pv_1 : Pole_Vault$ }

#### Brain image interpretation



#### Tbox:

| Brain                          |   | HumanOrgan                                                            |
|--------------------------------|---|-----------------------------------------------------------------------|
| CerebralHemisphere             |   | BrainAnatomicalStructure                                              |
| PeripheralCerebralHemisphere   |   | CerebralHemisphereArea                                                |
| SubCorticalCerebralHemisphere  |   | CerebralHemisphereArea                                                |
| GreyNuclei                     |   | BrainAnatomicalStructure                                              |
| LateralVentricle               |   | BrainAnatomicalStructure                                              |
| BrainTumor                     |   | Disease □ ∃hasLocation.Brain                                          |
| SmallDeforming Tumor           | ≡ | BrainTumor □ ∃hasBehavior.Infiltrating                                |
|                                |   | $\Box \exists has Enhancement. Non Enhanced$                          |
| SubCorticalSmallDeformingTumor | ≡ | SmallDeformingTumor □                                                 |
|                                |   | $\exists \textit{hasLocation.SubCorticalCerebralHemisphere}$          |
|                                |   | ⊓∃ <i>closeTo</i> .GreyNuclei                                         |
| PeripheralSmallDeformingTumor  | ≡ | BrainTumor □                                                          |
|                                |   | $\exists \textit{hasLocation}. \textit{PeripheralCerebralHemisphere}$ |
|                                |   | □∃farFrom.LateralVentricle                                            |
| LargeDeformingTumor            | ≡ | BrainTumor ⊓                                                          |
|                                |   | $\exists hasLocation.CerebralHemisphere$                              |
|                                |   | □∃hasComponent.Edema                                                  |
|                                |   | $\Box \exists hasComponent.Necrosis$                                  |
|                                |   | $\Box \exists has Enhancement. Enhanced$                              |

 $DiseasedBrain \equiv$ 

 $\equiv$ 

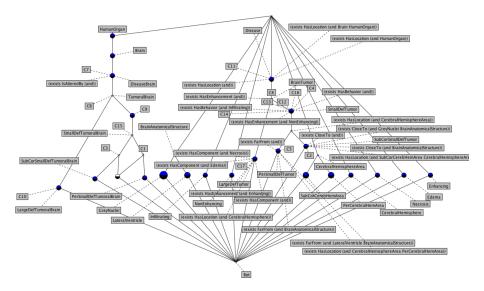
 $\equiv$ 

 $\equiv$ 

=

- TumoralBrain ≡
- SmallDeformingTumoralBrain
- LargeDeformingTumoralBrain
- PeripheralSmallDeformingTumoralBrain
- SubCorticalSmallDeformingTumoralBrain

- Brain □ ∃isAlteredBy.Disease
- Brain □ ∃isAlteredBy . BrainTumor
- Brain □ ∃isAlteredBy.SmallDeformingTumor
- Brain □ ∃isAlteredBy.LargeDeformingTumor
- Brain □ ∃isAlteredBy.PeripheralSmallDeformingTumor
- Brain □ ∃isAlteredBy.SubCorticalSmallDeformingTumor



Abox:

- t<sub>1</sub> : BrainTumor
- e1 : NonEnhanced
- *I*<sub>1</sub> : *LateralVentricle*
- *p*<sub>1</sub> : *PeripheralCerebralHemisphere*
- $(t_1, e_1)$  : hasEnhancement
- $(t_1, l_1)$  : farFrom
- $(t_1, p_1)$  : hasLocation

Most specific concept:

 $C \equiv BrainTumor \sqcap \exists hasEnhancement.NonEnhanced \sqcap$  $\exists farFrom.LateralVentricle \sqcap$  $\exists hasLocation.PeripheralCerebralHemisphere$ 

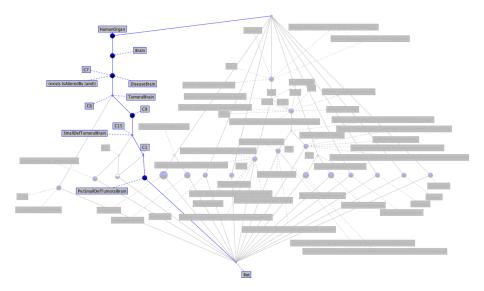
Concept abduction problem  $\langle \mathcal{K}, \mathcal{C} \rangle$  :  $\gamma \sqsubseteq_{\mathcal{K}} \mathcal{C}$ 

Possible explanation set:

 $\{DiseasedBrain, \exists isAlteredBy. \top, SmallDeformingTumoralBrain, PeripheralSmallDeformingTumoralBrain...\}$ .

A preferred solution with respect to some minimality criteria:

 $\gamma \equiv PeripheralSmallDeformingTumoralBrain$ 



- O. Stock (Ed.): Spatial and Temporal Reasoning, Kluwer, 1997.
- F. Le Ber, G. Ligozat, O. Papini (Eds): Raisonnements sur l'espace et le temps, Hermes Lavoisier, 2007.
- P. Marquis, O. Papini, H. Prade (Eds): Panorama de l'Intelligence Artificielle. Ses Bases Méthodologiques, ses Développements, Cepadues, 2014.
- M. Aiello, I. Pratt-Hartman, and J. van Benthem (Eds). Handbook of Spatial Logics. Springer-Verlag, 2007.