Propositional, first order and modal logics

Isabelle Bloch

LIP6, Sorbonne Université - LTCI, Télécom Paris

Laboratoire de
Traitement et
Communication de
I'Information
isabelle.bloch@sorbonne-universite.fr, isabelle.bloch@telecom-paris.fr

Role of logic in Al

■ For 2000 years, people tried to codify "human reasoning" and came up with logic.

- AI until the 1980s: mostly designing machines that are able to represent knowledge and to reason using logic (e.g. rule-based systems).
■ Current approach: mostly learning from data.
■ But how communicate knowledge to a system? (was easier in earlier systems).
- Logic is still of prime importance!

Goals of logic:
1 Knowledge representation (KR).
2 Reasoning.

Natural language vs logic

Natural language: tricky, sentences are not necessarily true or false, wrong conclusions are easy...
Logic: restrictive and less flexible but removes ambiguity.

Challenges of KR and reasoning:
■ representation of commonsense knowledge,
■ ability of a knowledge-based system to trade-off computational efficiency for accuracy of inferences,

- criteria to decide whether a reasoning is correct or not,
- ability to represent and manipulate uncertain knowledge and information.

Main components in any logic

■ Symbols, variables, formulas.

- Syntax.
- Semantics.
- Reasoning.

1. Propositional logic

Syntax

■ Propositional symbols or variables (atomic formulas): $p, q, r \ldots$.

- Connectives: \neg (negation), \wedge (conjunction), \vee (disjunction) \rightarrow (implication), \leftrightarrow (double implication).
■ Formulas: propositional variables, combination of formulas using connectives (and no others).

Semantics Interpretation of a formula:

$$
v: \mathcal{F} \rightarrow\{0,1\}
$$

$0=$ false, $1=$ true (truth value)
World $=$ assignment to all variables

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Notation: $A \equiv B$ iff A and B have the same truth tables.
Tautology T : always true.
Antilogy or contradiction \perp : always false.
Determining the truth value of a formula: using decomposition trees.
Prove that $(A \rightarrow(B \vee C)) \vee(A \rightarrow B)$ is not a tautology.

Some useful equivalences:

$$
\begin{gathered}
\neg(A \vee B) \equiv \neg A \wedge \neg B \\
\neg(A \wedge B) \equiv \neg A \vee \neg B \\
A \rightarrow B \equiv \neg A \vee B \\
A \vee \neg A \equiv \top \\
A \wedge \neg A \equiv \perp \\
A \rightarrow A \equiv \top \\
A \wedge \top \equiv A \\
A \vee \perp \equiv A
\end{gathered}
$$

Find the right negation...
Tintin - On a marché sur la Lune - Hergé, Casterman, 1954.
1 Le cirque Hipparque a besoin de deux clowns, vous feriez parfaitement l'affaire $(a \wedge b)$.
2 Le cirque Hipparque n'a pas besoin de deux clowns, vous ne pouvez donc pas faire l'affaire.

Other connectives

- nor $p \downarrow q=\neg(p \vee q)$
- nand $p \uparrow q=\neg(p \wedge q)$

■ xor $p \oplus q$ iff one and only one of the two propositions is true.
Example: prove that $p \oplus q \equiv(p \wedge \neg q) \vee(\neg p \wedge q) \equiv \neg(p \leftrightarrow q)$

Finite languages

■ Finite set of propositional variables $\left\{p_{1} \ldots p_{n}\right\}$.

- Infinite set of formulas, but finite set of non-equivalent formulas.

■ Complete formula: $q_{1} \wedge \ldots \wedge q_{n}$ where $\forall n, q_{i}=p_{i}$ or $q_{i}=\neg p_{i}$.
■ Disjunctive Normal Form (DNF): disjunction of complete formulas.

- By duality: Conjunctive Normal Form (CNF).
- Any formula of the language can be written as an equivalent formula in DNF (or CNF).
Example: Write in DNF form the formula $(p \vee q) \wedge r$.

Knowledge representation: example w : the grass is wet.
r : it was raining.
s : sprinkle was on.

$$
K B=\{r \rightarrow w, s \rightarrow w\}
$$

Models: $\{w, r, s\}$ (stands for $v(w)=1, v(r)=1, v(s)=1),\{w, \neg r, s\}$, $\{\neg w, \neg r, \neg s\} \ldots$

Axioms and inference rules
For \neg and \rightarrow :

$$
\begin{gathered}
\mathcal{A}_{1}: A \rightarrow(B \rightarrow A) \\
\mathcal{A}_{2}:(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) \\
\mathcal{A}_{3}:(\neg A \rightarrow \neg B) \rightarrow(B \rightarrow A)
\end{gathered}
$$

Note that $A \vee B \equiv \neg A \rightarrow B, A \wedge B \equiv \neg(A \rightarrow \neg B)$.

Modus ponens:

$$
\frac{A, A \rightarrow B}{B}
$$

\Rightarrow Deductive system S for proving theorems.

Consequence relation \vdash $H \vdash C$ iff C can be proved from H using a deduction system S.

Theorem $\vdash T$ (without hypotheses)

$$
A \vdash B \text { iff } \vdash(A \rightarrow B)
$$

Theorems of propositional logic are exactly the tautologies (completeness and non-contradiction).

Deduction rules using elimination and introduction

	Elimination	Introduction
Conjunction	$\frac{P \wedge Q}{P}$ and $\frac{P \wedge Q}{Q}$	$\frac{P, Q}{P \wedge Q}$
Disjunction	$\frac{P \vee Q, P \vdash M, Q \vdash M}{M}$	$\frac{P}{P \vee Q}$ and $\frac{Q}{P \vee Q}$
Implication	$\frac{P, P \rightarrow Q}{Q}$	$\frac{P \vdash Q}{P \rightarrow Q}$
Negation	$\frac{P, \neg P}{\perp}$	$\frac{P \vdash \perp}{\neg P}$

Example: prove that $\{p \rightarrow(q \wedge r), p\} \vdash r$

Satisfiability: A is true in the world m (m is a model for A, m satisfies A)

$$
m \models A
$$

For a knowledge base: $K B$ is satisfiable iff $\exists m, \forall \varphi \in K B, m \models \varphi$ (i.e. $\operatorname{Mod}(K B) \neq \emptyset)$.

$$
\begin{array}{lll}
m \models A \wedge B & \text { iff } & m \models A \text { and } m \models B \\
m \models A \vee B & \text { iff } & m \models A \text { or } m \models B \\
m \models \neg A & \text { iff } & m \not \models A \\
m \models A \rightarrow B & \text { iff } & m \models \neg A \text { or } m \models B \\
A \text { tautology } & \text { iff } & \forall m, m \models A \\
A \rightarrow B \text { tautology } & \text { iff } & \forall m, m \models A \text { implies } m \models B
\end{array}
$$

$$
A \vdash B \text { iff } m \models A \text { implies } m \models B
$$

Checking the satisfiability of a formula

- Truth table (2^{n} lines for n variables).

■ Decomposition to check only relevant cases.

- Rewritting the formula to simplify its syntax.
- Tableau method.

Example of the formula on Page 6: $(A \rightarrow(B \vee C)) \vee(A \rightarrow B)$
Extends to a knowledge base (set of formulas) $K B$, considered as a conjunction of formulas: $\bigwedge K B=\bigwedge_{\varphi \in K B} \varphi$

Tableau method

$=$ an example of computational procedure

- Tableau $=$ binary tree
- built from an initial set of formulas
- using construction rules

Construction (or expansion) rules:
For I_{1}, l_{2} literals:
$\square\left(I_{1} \wedge I_{2}\right) \Longrightarrow\left(I_{1}, I_{2}\right)$
$\square\left(I_{1} \vee I_{2}\right) \Longrightarrow\left(I_{1} \mid I_{2}\right)$
$\square\left(I_{1} \rightarrow I_{2}\right) \Longrightarrow\left(\neg I_{1} \mid I_{2}\right)$
where \| indicates two separated branches

- $\neg \neg I_{1} \Longrightarrow I_{1}$
- $\neg\left(I_{1} \wedge I_{2}\right) \Longrightarrow \neg I_{1} \vee \neg I_{2}$

■ $\neg\left(I_{1} \vee I_{2}\right) \Longrightarrow \neg I_{1} \wedge \neg I_{2}$
Branch $=$ decomposition sequence until a node with only atomic propositions and their negations is reached.

Example: $T=\{a, \neg a \vee b, \neg b \vee c\}-$ several possibilities

Knowledge representation: example (cont'd) w : the grass is wet.
r : it was raining.
s : sprinkle was on.

$$
K B=\{r \rightarrow w, s \rightarrow w, \neg w\}
$$

Can we deduce $\neg r$ from $K B$?

Consistent formulas

A consistent with B if $A \nvdash \neg B$

Equivalent expressions:

- B consistent with A.
- $\exists m, m \vDash A$ and $m \models B$.
- $A \wedge B$ satisfiable.

2. Predicate logic, first order logic

- Representation of entities (objects) and their properties, and relations among such entities.

■ More expressive than propositional logic.
■ Use of quantifiers (\forall, \exists).

- Predicates used to represent a property or a relation between entities.

Example of syllogism:
All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

Syntax

Formulas are built from:

- Constants $a, b \ldots$

■ Variables $x, y, z \ldots$
■ Elementary terms are constants and variables.

- Functions: apply to terms to generate new terms.

■ Predicates: apply to terms, as relational expressions (do not create new terms).
■ Logical connectives: apply on formulas.

- Quantifiers: allow the representation of properties that hold for a collection of objects. For a variable x :
- Universal: $\forall x P$ (for all x the property P holds).
- Existential: $\exists x P$ (P holds for some x).
- $\neg(\forall x P) \equiv \exists x(\neg P), \neg(\exists x P) \equiv \forall x(\neg P)$.

Atomic formulas: All formulas that can be obtained by applying a predicate.
Formulas of the first order language: built from atomic formulas, connectives and quantifiers.
Free variable: has at least one non-quantified occurrence in a formula.
Bound variable: has at least one quantified occurrence.
Closed formula: does not contain any free variable.

Examples:
$\square \exists x p(x, y, z) \vee(\forall z(q(z) \rightarrow r(x, z))$
x and z are both free and bound, y is free and not bound.

- $\forall x \exists y((p(x, y) \rightarrow \forall z r(x, y, z))$ is a closed formula.

Formula in prenex form: all quantifiers at the beginning.

Write in prenex form the following formula:

$$
\forall x F \rightarrow \exists x G
$$

Axioms and inference rules
Same as in propositional logic, plus:

$$
\mathcal{A}_{4}:(\forall x F(x)) \rightarrow F(t / x)
$$

where t replaces x in $F(t / x)$ (substitution)

$$
\mathcal{A}_{5}:(\forall x(F \rightarrow G)) \rightarrow(F \rightarrow \forall x G) \text { for } x \text { non-free in } F
$$

Generalization:

$$
\frac{F}{\forall x F}
$$

Proofs, consequences, theorems
Same definitions as in propositional logic.
Deduction theorem:

$$
F \vdash G \text { iff } \vdash(F \rightarrow G)
$$

Socrates' syllogism:

- Predicate $H(x): x$ is a men.

■ Functional symbol s: Socrates.

- Predicate $M(x): x$ is mortal.

From \mathcal{A}_{4} and modus ponens:

$$
\frac{\forall x(H(x) \rightarrow M(x)), H(s)}{M(s)}
$$

Deduction rules using additional elimination and introduction for \forall and \exists

	Elimination	Introduction
\forall	$\frac{\forall x F(x)}{F(t / x)}$	$\frac{F}{\forall \times F(x)}$
\exists	$\frac{\exists x F, F \rightarrow G}{G}($ if x non-free in $G)$	$\frac{F(t)}{\exists x F(x)}$

Prove that

$$
\exists x(F(x) \vee G(x)) \vdash(\exists x F(x)) \vee(\exists x G(x))
$$

Structures, interpretations and models

Establishing the validity of a formula requires an interpretation!
Structure: $\mathcal{M}=(D, I)$
■ D : non-empty domain,
■ I: interpretation in D of the symbols of the language

- maps every functional symbol to a function in D with the same arity,
- maps every relational symbol to a predicate in D with the same arity.

For a closed formula F :
$\mathcal{M} \models F$ if the interpretation of F is true in \mathcal{M}
For a free formula $F(x)$, and $a \in D$:
$\mathcal{M} \models F(a)$ if the interpretation of $F(a)$ is true in \mathcal{M}

Example

- Constant a

■ Unary functional symbol f

- Binay relational symbol P
$\square \mathcal{T}=\left\{F_{1}, F_{2}, F_{3}\right\}$ with

$$
\begin{align*}
& F_{1}=\forall x \forall y \forall z(P(x, y) \wedge P(y, z) \rightarrow P(x, z)) \tag{1}\\
& F_{2}=\forall x P(a, x) \tag{2}\\
& F_{3}=\forall x P(x, f(x)) \tag{3}
\end{align*}
$$

For $\mathcal{M}=\left\{\mathbb{N}, 0, x^{2}, \leq\right\}$, we have $\mathcal{M} \models \mathcal{T}$.

Properties for closed formulas F and G :

$$
\begin{array}{lll}
\mathcal{M} \equiv \neg F & \text { iff } & \mathcal{M} \not \equiv F \\
\mathcal{M} \equiv(F \wedge G) & \text { iff } & \mathcal{M} \neq F \text { and } \mathcal{M} \models G \\
\mathcal{M} \equiv(F \vee G) & \text { iff } & \mathcal{M} \neq F \text { or } \mathcal{M} \vDash G \\
\mathcal{M} \equiv(F \rightarrow G) & \text { iff } & \mathcal{M} \neq F \text { or } \mathcal{M} \equiv G
\end{array}
$$

Properties for $F(x)$ and $G(x)$ having x as free variable:

$$
\begin{array}{lll}
\mathcal{M} \equiv \neg F(a) & \text { iff } & \mathcal{M} \not \models F(a) \\
\mathcal{M} \equiv(F \wedge G)(a) & \text { iff } & \mathcal{M}=F(a) \text { and } \mathcal{M} \models G(a) \\
\mathcal{M} \equiv(F \vee G)(a) & \text { iff } & \mathcal{M} \models F(a) \text { or } \mathcal{M} \models G(a) \\
\mathcal{M} \equiv(F \rightarrow G)(a) & \text { iff } & \mathcal{M} \neq F(a) \text { or } \mathcal{M} \models G(a) \\
\mathcal{M} \equiv \forall x F(x) & \text { iff } & \forall a \in D, \mathcal{M} \models F(a) \\
\mathcal{M} \equiv \exists x F(x) & \text { iff } & \exists a \in D, \mathcal{M}=F(a)
\end{array}
$$

Logically (universally) valid formulas: whose interpretation is true in all structures.
F and G are equivalent iff they have the same models.

Completeness: $\vdash T$ iff $\mathcal{M} \models T$ for any structure \mathcal{M}.
Deduction theorem + completeness: $F \vdash G$ iff any model of F is a model of G.

Properties of the consequence relation:

1 Reflexivity: $F \vdash F$
2 Logical equivalence: if $F \equiv G$ and $F \vdash H$, then $G \vdash H$
3 Transitivity: if $F \vdash G$ and $G \vdash H$, then $F \vdash H$
4 Cut: if $F \wedge G \vdash H$ and $F \vdash G$, then $F \vdash H$
5 Disjunction of antecedents: if $F \vdash H$ and $G \vdash H$, then $F \vee G \vdash H$
6 Monotony: if $F \vdash H$, then $F \wedge G \vdash H$
Note: same as in propositional logic.

3. Modals Logics

■ Back to Aristotle:

$$
\text { possible }=\left\{\begin{array}{l}
\text { can be or not be } \\
\text { contingent }
\end{array}\right.
$$

Three modalities: necessary, impossible, contingent (mutually incompatible).
■ Carnap: semantics of possible worlds.
■ Kripke: accessibility relation between possible worlds.
■ Many different modal logics, e.g.:

- deontic logic,
- temporal logic,
- epistemic logic,
- dynamic logic,
- logic of places,

Here: bases of propositional modal logic

Modalities

- Modify the meaning of a proposition.

■ Formalize modalities of the natural language.
■ Universal modal operator $\square=$ necessity.
■ Existential modal operator: $\diamond=$ possibility.

Examples:

$\square A$ - Necessity	$\diamond A$ - Possibility
It is necessary that A	It is possible that A
It will be always true that A	It will sometimes be true that A
It must be that A	It is allowed that A
It is known that A	The inverse of A is not known
\ldots	\ldots

Syntax

- All the syntax of propositional logic.

■ If A is a formula, then $\square A$ and $\diamond A$ are formulas.
Duality constraint: $\diamond A \equiv \neg \square \neg A$.

Semantics

- P : atoms of a modal language.
- Structure $\mathcal{F}=(W, R)$
- $W=$ non-empty universe of possible worlds,
- $R \subseteq W \times W=$ accessibility relation.

■ Model $\mathcal{M}=(W, R, V)$ with

$$
\begin{aligned}
V: P & \rightarrow 2^{W} \\
p & \mapsto V(p)
\end{aligned}
$$

$V(p)=$ subset of W where p is true.
■ Notation $\mathcal{M} \models{ }_{\omega} A$: A is true at ω in the model \mathcal{M}.

- $\mathcal{M} \models_{\omega} \top$
- $\mathcal{M} \not \vDash_{\omega} \perp$

■ $\mathcal{M} \models_{\omega} p$ iff $\omega \in V(p)$

- $\mathcal{M} \neq{ }_{\omega} \neg A$ iff $\mathcal{M} \not \models_{\omega} A$
- $\mathcal{M} \models_{\omega} A_{1} \wedge A_{2}$ iff $\mathcal{M}=_{\omega} A_{1}$ and $\mathcal{M} \models_{\omega} A_{2}$

■ $\mathcal{M} \models{ }_{\omega} A_{1} \vee A_{2}$ iff $\mathcal{M} \models{ }_{\omega} A_{1}$ or $\mathcal{M} \models{ }_{\omega} A_{2}$
■ $\mathcal{M} \vDash{ }_{\omega} A_{1} \rightarrow A_{2}$ iff $\mathcal{M} \vDash{ }_{\omega} A_{1}$ implies $\mathcal{M} \models{ }_{\omega} A_{2}$
■ $\mathcal{M}=_{\omega} \square A$ iff $\omega R t$ implies $\mathcal{M} \models_{t} A$ for all $t \in W$

- $\mathcal{M}=_{\omega} \diamond A$ iff $\mathcal{M} \models_{t} A$ for at least a $t \in W$ such that $\omega R t$

Valid formula

- A is valid in a model \mathcal{M} if $\mathcal{M} \models_{\omega} A$ for all $w \in W$ (notation: $\mathcal{M} \vDash A$).
- A is valid in a structure \mathcal{F} if it is valid in any model having this structure (notation: $\mathcal{F} \models A$).
- A is valid if it is valid in any structure (notation: $\models A$).

A simple example
$P=\{p, q, r\}$

$\mathcal{M}: W=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}, V$ as in the figure, $R=\left\{\left(\omega_{1}, \omega_{2}\right),\left(\omega_{2}, \omega_{2}\right),\left(\omega_{2}, \omega_{3}\right),\left(\omega_{3}, \omega_{2}\right),\left(\omega_{3}, \omega_{4}\right),\left(\omega_{1}, \omega_{4}\right)\right\}$. Prove that

- $\mathcal{M}=_{\omega_{2}} \square p$
- $\mathcal{M} \vDash{ }_{\omega_{1}} \diamond(r \wedge \square q)$

```
Schemas
K }\square(A->B)->(\squareA->\squareB
P A ->\squareA
L }\square(\squareA->A)->\square
M \square\diamondA ->\diamond\squareA
```

$T \quad \square A \rightarrow A$
$B \quad A \rightarrow \square \diamond A$
$D \quad \square A \rightarrow \diamond A$
$4 \quad \square A \rightarrow \square \square A$
$5 \diamond A \rightarrow \square \diamond A$

Validity of schemas

Validity of iff R is
T reflexive
B symmetric
$D \quad$ reproductive or seria
4 transitive
5 Euclidean
$\forall s, s R s$
$\forall s, t, s R T$ implies $t R s$
$\forall s, \exists t, s R t$
$\forall s, t, u, s R t$ and $t R u$ implies $s R u$
$\forall s, t, u, s R t$ and $s R u$ implies $t R u$

Example: prove that $\square A \rightarrow A$ is valid iff R is reflexive.

Typical examples

- Normal logics: contain K and the necessity inference rule $R N$: $\frac{A}{\square A}$.
- A is a theorem of logic K iff A is valid.
- KT logic
- A is a theorem of logic $K T$ iff A is valid in any structure where R is reflexive.
■ S4 logic: contains KT4
- A is a theorem of logic $S 4$ iff A is valid in any structure where R is reflexive and transitive.
■ S5 logic: contains KT45
- A is a theorem of logic $S 5$ iff A is valid in any structure where R is reflexive, transitive and Euclidean (R is an equivalence relation).

Theorems and inference rules
Depend on the schemas and axiomatic systems.

Example: Prove that
■ $A \rightarrow \diamond A$ is a theorem of $S 5$,
■ $A \rightarrow \square \diamond A$ is a theorem of $S 5$,

- $R M$: $\frac{A \rightarrow B}{\square A \rightarrow \square B}$ is an inference rule of $S 5$.

Algebraic approach for semantics

- Truth values can take other values than 0 and 1.
$■ \Rightarrow$ multi-valued logics.
■ Example: Lukasiewicz' 3-valued logic

Decidability

Is there an algorithm able to answer yes or no?
■ Propositional logic: establishing that a formula is a tautology, that it is satisfiable, or that it is a consequence of a set of formulas are all decidable.

■ First order logic: not decidable in general.
■ Modal logic: decidable it if has the finite model property (i.e. every non-theorem is false in some finite model) and is axiomatizable by a finite number of schemas (ex: KT, KT4...).

A few references

■ B. Chellas - Modal Logic. Cambridge University Press, 1980.
■ G. Dowek - La logique. Poche Le Pommier, 2015.
$■$ M. Freund - Logique et raisonnemment. Ellipses, 2016.
$■$ P. Gochet, P. Gribomont, A. Thayse - Logique, méthodes pour l'intelligence artificielle. Hermes Science, 2000.
■ P. Marquis, O. Papini, H. Prade (Ed.) - Panorama de l'intelligence artificielles. Cepadues, 2014.
A Guided Tour of Artificial Intelligence Research. Springer, 2020.
■ S. Russell and P. Norvig - Artificial Intelligence. Prentice Hall, 2002.

