Propositional, first order and modal logics

Isabelle Bloch

LIP6, Sorbonne Université - LTCI, Télécom Paris

 $is a belle.bloch @ sorbonne-universite.fr, \ is a belle.bloch @ telecom-paris.fr \\$

Role of logic in Al

- For 2000 years, people tried to codify "human reasoning" and came up with logic.
- Al until the 1980s: mostly designing machines that are able to represent knowledge and to reason using logic (e.g. rule-based systems).
- Current approach: mostly learning from data.
- But how communicate knowledge to a system? (was easier in earlier systems).
- Logic is still of prime importance!

Goals of logic:

- 1 Knowledge representation (KR).
- 2 Reasoning.

Natural language: tricky, sentences are not necessarily true or false, wrong conclusions are easy...

Logic: restrictive and less flexible but removes ambiguity.

Challenges of KR and reasoning:

- representation of commonsense knowledge,
- ability of a knowledge-based system to trade-off computational efficiency for accuracy of inferences,
- criteria to decide whether a reasoning is correct or not,
- ability to represent and manipulate uncertain knowledge and information.

Main components in any logic

- Symbols, variables, formulas.
- Syntax.
- Semantics.
- Reasoning.

1. Propositional logic

Syntax

- Propositional symbols or variables (atomic formulas): *p*, *q*, *r*....
- Connectives: \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication), \leftrightarrow (double implication).
- Formulas: propositional variables, combination of formulas using connectives (and no others).

Semantics Interpretation of a formula:

$$v:\mathcal{F}\to\{0,1\}$$

0 = false, 1 = true (truth value)World = assignment to all variables

p	q	$\neg p$	$p \wedge q$	$p \lor q$	p ightarrow q	$p \leftrightarrow q$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Notation: $A \equiv B$ iff A and B have the same truth tables.

Tautology \top : always true. Antilogy or contradiction \perp : always false.

Determining the truth value of a formula: using decomposition trees.

Prove that $(A \rightarrow (B \lor C)) \lor (A \rightarrow B)$ is not a tautology.

Some useful equivalences:

$$\neg (A \lor B) \equiv \neg A \land \neg B$$
$$\neg (A \land B) \equiv \neg A \lor \neg B$$
$$A \to B \equiv \neg A \lor B$$
$$A \lor \neg A \equiv \top$$
$$A \land \neg A \equiv \bot$$
$$A \to A \equiv \top$$
$$A \land \neg A \equiv \bot$$
$$A \land \neg A \equiv A$$
$$A \lor \bot \equiv A$$

...

Find the right negation...

Tintin - On a marché sur la Lune - Hergé, Casterman, 1954.

- **1** Le cirque Hipparque a besoin de deux clowns, vous feriez parfaitement l'affaire $(a \land b)$.
- **2** Le cirque Hipparque n'a pas besoin de deux clowns, vous ne pouvez donc pas faire l'affaire.

Other connectives

- nor $p \downarrow q = \neg (p \lor q)$
- nand $p \uparrow q = \neg (p \land q)$

• xor $p \oplus q$ iff one and only one of the two propositions is true.

Example: prove that $p\oplus q\equiv (p\wedge \neg q)\vee (\neg p\wedge q)\equiv \neg (p\leftrightarrow q)$

Finite languages

- Finite set of propositional variables $\{p_1...p_n\}$.
- Infinite set of formulas, but finite set of non-equivalent formulas.
- Complete formula: $q_1 \wedge ... \wedge q_n$ where $\forall n, q_i = p_i$ or $q_i = \neg p_i$.
- Disjunctive Normal Form (DNF): disjunction of complete formulas.
- By duality: Conjunctive Normal Form (CNF).
- Any formula of the language can be written as an equivalent formula in DNF (or CNF).

Example: Write in DNF form the formula $(p \lor q) \land r$.

Knowledge representation: example

- w: the grass is wet.
- r: it was raining.
- s: sprinkle was on.

$$\begin{aligned} & \mathsf{KB} = \{ r \to w, s \to w \} \\ & \mathsf{Models:} \ \{ w, r, s \} \ (\mathsf{stands} \ \mathsf{for} \ v(w) = 1, v(r) = 1, v(s) = 1), \ \{ w, \neg r, s \}, \\ & \{ \neg w, \neg r, \neg s \}... \end{aligned}$$

Axioms and inference rules For \neg and \rightarrow :

$$egin{aligned} \mathcal{A}_1 &: A o (B o A) \ \mathcal{A}_2 &: (A o (B o C)) o ((A o B) o (A o C)) \ \mathcal{A}_3 &: (
egned A o
egned B) o (B o A) \end{aligned}$$

Note that
$$A \lor B \equiv \neg A \rightarrow B$$
, $A \land B \equiv \neg (A \rightarrow \neg B)$.

Modus ponens:

$$\frac{A, A \to B}{B}$$

 \Rightarrow Deductive system *S* for proving theorems.

Consequence relation \vdash

 $H \vdash C$ iff C can be proved from H using a deduction system S.

Theorem \vdash *T* (without hypotheses)

 $A \vdash B$ iff $\vdash (A \rightarrow B)$

Theorems of propositional logic are exactly the tautologies (completeness and non-contradiction).

Deduction rules using elimination and introduction

	Elimination	Introduction
Conjunction	$\frac{P \wedge Q}{P}$ and $\frac{P \wedge Q}{Q}$	$rac{P,Q}{P\wedge Q}$
Disjunction	$\frac{P \lor Q, P \vdash M, Q \vdash M}{M}$	$\frac{P}{P \lor Q}$ and $\frac{Q}{P \lor Q}$
Implication	$rac{P,P ightarrow Q}{Q}$	$rac{Pdash Q}{P ightarrow Q}$
Negation	$\frac{P,\neg P}{\bot}$	$\frac{P\vdash\perp}{\neg P}$

Example: prove that $\{p \rightarrow (q \land r), p\} \vdash r$

Satisfiability: A is true in the world m (m is a model for A, m satisfies A)

 $m \models A$

For a knowledge base: *KB* is satisfiable iff $\exists m, \forall \varphi \in KB, m \models \varphi$ (i.e. $Mod(KB) \neq \emptyset$).

 $m \models A \land B$ iff $m \models A$ and $m \models B$ $m \models A \lor B$ iff $m \models A$ or $m \models B$ $m \models \neg A$ iff $m \not\models A$ $m \models A \rightarrow B$ iff $m \not\models \neg A$ orA tautologyiff $\forall m, m \models A$ $A \rightarrow B$ tautologyiff $\forall m, m \models A$

 $A \vdash B$ iff $m \models A$ implies $m \models B$

Checking the satisfiability of a formula

- Truth table $(2^n \text{ lines for } n \text{ variables})$.
- Decomposition to check only relevant cases.
- Rewritting the formula to simplify its syntax.
- Tableau method.

Example of the formula on Page 6: $(A \rightarrow (B \lor C)) \lor (A \rightarrow B)$

Extends to a knowledge base (set of formulas) KB, considered as a conjunction of formulas: $\bigwedge KB = \bigwedge_{\varphi \in KB} \varphi$

Tableau method

= an example of computational procedure

- Tableau = binary tree
- built from an initial set of formulas
- using construction rules

Construction (or expansion) rules:

For I_1, I_2 literals:

 $\bullet (l_1 \wedge l_2) \Longrightarrow (l_1, l_2)$

$$\bullet (l_1 \lor l_2) \Longrightarrow (l_1 \mid l_2)$$

$$\bullet (l_1 \rightarrow l_2) \Longrightarrow (\neg l_1 \mid l_2)$$

where | indicates two separated branches

$$\neg \neg l_1 \Longrightarrow l_1 \neg (l_1 \land l_2) \Longrightarrow \neg l_1 \lor \neg l_2 \neg (l_1 \lor l_2) \Longrightarrow \neg l_1 \land \neg l_2$$

 $\label{eq:Branch} \begin{array}{l} \mathsf{Branch} = \mathsf{decomposition} \ \mathsf{sequence} \ \mathsf{until} \ \mathsf{a} \ \mathsf{node} \ \mathsf{with} \ \mathsf{only} \ \mathsf{atomic} \\ \mathsf{propositions} \ \mathsf{and} \ \mathsf{their} \ \mathsf{negations} \ \mathsf{is} \ \mathsf{reached}. \end{array}$

Knowledge representation: example (cont'd)

- w: the grass is wet.
- r: it was raining.
- s: sprinkle was on.

$$KB = \{r \rightarrow w, s \rightarrow w, \neg w\}$$

Can we deduce $\neg r$ from *KB*?

Consistent formulas

A consistent with B if $A \not\vdash \neg B$

Equivalent expressions:

- *B* consistent with *A*.
- $\exists m, m \models A \text{ and } m \models B$.
- $A \wedge B$ satisfiable.

2. Predicate logic, first order logic

- Representation of entities (objects) and their properties, and relations among such entities.
- More expressive than propositional logic.
- Use of quantifiers (\forall, \exists) .
- Predicates used to represent a property or a relation between entities.

Example of syllogism:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

Syntax

Formulas are built from:

- Constants *a*, *b*...
- Variables *x*, *y*, *z*...
- Elementary terms are constants and variables.
- Functions: apply to terms to generate new terms.
- Predicates: apply to terms, as relational expressions (do not create new terms).
- Logical connectives: apply on formulas.
- Quantifiers: allow the representation of properties that hold for a collection of objects. For a variable x:
 - Universal: $\forall x P$ (for all x the property P holds).
 - Existential: $\exists x P (P \text{ holds for some } x)$.
 - $\neg (\forall xP) \equiv \exists x(\neg P), \ \neg (\exists xP) \equiv \forall x(\neg P).$

Atomic formulas: All formulas that can be obtained by applying a predicate.

Formulas of the first order language: built from atomic formulas, connectives and quantifiers.

Free variable: has at least one non-quantified occurrence in a formula. Bound variable: has at least one quantified occurrence.

Closed formula: does not contain any free variable.

Examples:

■ $\exists xp(x, y, z) \lor (\forall z(q(z) \rightarrow r(x, z)))$ x and z are both free and bound, y is free and not bound.

• $\forall x \exists y ((p(x, y) \rightarrow \forall zr(x, y, z)) \text{ is a closed formula.}$

Formula in prenex form: all quantifiers at the beginning.

Write in prenex form the following formula:

 $\forall xF \rightarrow \exists xG$

Axioms and inference rules

Same as in propositional logic, plus:

$$\mathcal{A}_4: (\forall x F(x)) \to F(t/x)$$

where t replaces x in F(t/x) (substitution)

$$\mathcal{A}_5: (\forall x(F
ightarrow G))
ightarrow (F
ightarrow \forall xG)$$
 for x non-free in F

Generalization:

$$\frac{F}{\forall xF}$$

Proofs, consequences, theorems Same definitions as in propositional logic. Deduction theorem:

 $F \vdash G$ iff $\vdash (F \rightarrow G)$

Socrates' syllogism:

- Predicate H(x): x is a men.
- Functional symbol s: Socrates.
- Predicate M(x): x is mortal.

From \mathcal{A}_4 and modus ponens:

$$\frac{\forall x(H(x) \to M(x)), H(s)}{M(s)}$$

Deduction rules using additional elimination and introduction for \forall and \exists

	Elimination	Introduction
A	$rac{orall x F(x)}{F(t/x)}$	$\frac{F}{\forall xF(x)}$
Ξ	$\frac{\exists xF, F \to G}{G}$ (if x non-free in G)	$\frac{F(t)}{\exists x F(x)}$

Prove that

$$\exists x (F(x) \lor G(x)) \vdash (\exists x F(x)) \lor (\exists x G(x))$$

_

Structures, interpretations and models

Establishing the validity of a formula requires an interpretation! Structure: $\mathcal{M} = (D, I)$

- D: non-empty domain,
- *I*: interpretation in *D* of the symbols of the language
 - maps every functional symbol to a function in D with the same arity,
 - maps every relational symbol to a predicate in D with the same arity.

For a closed formula F:

 $\mathcal{M} \models F$ if the interpretation of F is true in \mathcal{M}

For a free formula F(x), and $a \in D$:

 $\mathcal{M} \models F(a)$ if the interpretation of F(a) is true in \mathcal{M}

Example

- Constant a
- Unary functional symbol f
- Binay relational symbol P
- $\mathcal{T} = \{F_1, F_2, F_3\}$ with

$$\begin{aligned} F_1 = &\forall x \forall y \forall z (P(x, y) \land P(y, z) \to P(x, z)) \\ F_2 = &\forall x P(a, x) \\ F_3 = &\forall x P(x, f(x)) \end{aligned}$$

For $\mathcal{M} = \{\mathbb{N}, 0, x^2, \leq\}$, we have $\mathcal{M} \models \mathcal{T}$.

Properties for closed formulas *F* and *G*:

$$\begin{array}{ll} \mathcal{M} \models \neg F & \text{iff} & \mathcal{M} \not\models F \\ \mathcal{M} \models (F \land G) & \text{iff} & \mathcal{M} \models F \text{ and } \mathcal{M} \models G \\ \mathcal{M} \models (F \lor G) & \text{iff} & \mathcal{M} \models F \text{ or } \mathcal{M} \models G \\ \mathcal{M} \models (F \to G) & \text{iff} & \mathcal{M} \not\models F \text{ or } \mathcal{M} \models G \end{array}$$

Properties for F(x) and G(x) having x as free variable:

$$\begin{array}{lll} \mathcal{M} \models \neg F(a) & \text{iff} & \mathcal{M} \not\models F(a) \\ \mathcal{M} \models (F \land G)(a) & \text{iff} & \mathcal{M} \models F(a) \text{ and } \mathcal{M} \models G(a) \\ \mathcal{M} \models (F \lor G)(a) & \text{iff} & \mathcal{M} \models F(a) \text{ or } \mathcal{M} \models G(a) \\ \mathcal{M} \models (F \to G)(a) & \text{iff} & \mathcal{M} \not\models F(a) \text{ or } \mathcal{M} \models G(a) \\ \mathcal{M} \models \forall x F(x) & \text{iff} & \forall a \in D, \mathcal{M} \models F(a) \\ \mathcal{M} \models \exists x F(x) & \text{iff} & \exists a \in D, \mathcal{M} \models F(a) \end{array}$$

Logically (universally) valid formulas: whose interpretation is true in all structures.

F and G are equivalent iff they have the same models.

Completeness: \vdash *T* iff $\mathcal{M} \models$ *T* for any structure \mathcal{M} .

Deduction theorem + completeness: $F \vdash G$ iff any model of F is a model of G.

Properties of the consequence relation:

- **1** Reflexivity: $F \vdash F$
- **2** Logical equivalence: if $F \equiv G$ and $F \vdash H$, then $G \vdash H$
- **3** Transitivity: if $F \vdash G$ and $G \vdash H$, then $F \vdash H$
- 4 Cut: if $F \land G \vdash H$ and $F \vdash G$, then $F \vdash H$
- **5** Disjunction of antecedents: if $F \vdash H$ and $G \vdash H$, then $F \lor G \vdash H$
- 6 Monotony: if $F \vdash H$, then $F \land G \vdash H$

Note: same as in propositional logic.

3. Modals Logics

Back to Aristotle:

$$possible = \begin{cases} can be or not be \\ contingent \end{cases}$$

Three modalities: necessary, impossible, contingent (mutually incompatible).

- Carnap: semantics of possible worlds.
- Kripke: accessibility relation between possible worlds.
- Many different modal logics, e.g.:
 - deontic logic,
 - temporal logic,
 - epistemic logic,
 - dynamic logic,
 - logic of places,
 - ...

Here: bases of propositional modal logic

I. Bloch

Modalities

- Modify the meaning of a proposition.
- Formalize modalities of the natural language.
- Universal modal operator \Box = necessity.
- Existential modal operator: $\Diamond = \mathsf{possibility}$.

Examples:

$\Box A$ - Necessity	$\Diamond A$ - Possibility
It is necessary that A	It is possible that A
It will be always true that A	It will sometimes be true that A
It must be that A	It is allowed that A
It is known that A	The inverse of A is not known

Syntax

- All the syntax of propositional logic.
- If A is a formula, then $\Box A$ and $\Diamond A$ are formulas.

Duality constraint: $\Diamond A \equiv \neg \Box \neg A$.

Semantics

■ *P*: atoms of a modal language.

- Structure $\mathcal{F} = (W, R)$
 - W = non-empty universe of possible worlds,
 - $R \subseteq W \times W$ = accessibility relation.
- Model $\mathcal{M} = (W, R, V)$ with

$$egin{array}{rcl} V:&P&
ightarrow&2^W\ &p&\mapsto&V(p) \end{array}$$

V(p) = subset of W where p is true.

• Notation $\mathcal{M} \models_{\omega} A$: A is true at ω in the model \mathcal{M} .

 $\blacksquare \mathcal{M} \models_{\omega} \top$ $\mathcal{M} \not\models_{\omega} \bot$ • $\mathcal{M} \models_{\omega} p$ iff $\omega \in V(p)$ • $\mathcal{M} \models_{\omega} \neg A$ iff $\mathcal{M} \nvDash_{\omega} A$ • $\mathcal{M} \models_{\omega} A_1 \land A_2$ iff $\mathcal{M} \models_{\omega} A_1$ and $\mathcal{M} \models_{\omega} A_2$ • $\mathcal{M} \models_{\omega} A_1 \lor A_2$ iff $\mathcal{M} \models_{\omega} A_1$ or $\mathcal{M} \models_{\omega} A_2$ • $\mathcal{M} \models_{\omega} A_1 \rightarrow A_2$ iff $\mathcal{M} \models_{\omega} A_1$ implies $\mathcal{M} \models_{\omega} A_2$ • $\mathcal{M} \models_{\omega} \Box A$ iff ωRt implies $\mathcal{M} \models_t A$ for all $t \in W$ • $\mathcal{M} \models_{\omega} \Diamond A$ iff $\mathcal{M} \models_t A$ for at least a $t \in W$ such that ωRt

Valid formula

- A is valid in a model \mathcal{M} if $\mathcal{M} \models_{\omega} A$ for all $w \in W$ (notation: $\mathcal{M} \models A$).
- A is valid in a structure \mathcal{F} if it is valid in any model having this structure (notation: $\mathcal{F} \models A$).
- A is valid if it is valid in any structure (notation: $\models A$).

$$\begin{array}{c} \bullet \ \mathcal{M} \models_{\omega_2} \Box \rho \\ \bullet \ \mathcal{M} \models_{\omega_1} \Diamond (r \land \Box q \end{array} \end{array}$$

$\begin{array}{l} \text{Schemas} \\ K & \Box(A \to B) \to (\Box A \to \Box B) \\ P & A \to \Box A \\ L & \Box(\Box A \to A) \to \Box A \end{array}$

- $M \quad \Box \Diamond A \to \Diamond \Box A$
- $T \quad \Box A \rightarrow A$
- $B \quad A \to \Box \Diamond A$
- $D \quad \Box A \rightarrow \Diamond A$
- 4 $\Box A \rightarrow \Box \Box A$
- 5 $\Diamond A \rightarrow \Box \Diamond A$

. . .

Validity of schemas

Validity of	iff R is	
Т	reflexive	$\forall s, sRs$
В	symmetric	$\forall s, t, sRT$ implies tRs
D	reproductive or serial	$\forall s, \exists t, sRt$
4	transitive	$\forall s, t, u, sRt$ and tRu implies sRu
5	Euclidean	$\forall s, t, u, sRt$ and sRu implies tRu

Example: prove that $\Box A \rightarrow A$ is valid iff *R* is reflexive.

Typical examples

Normal logics: contain K and the necessity inference rule $RN : \frac{A}{\Box A}$.

- A is a theorem of logic K iff A is valid.
- KT logic
 - A is a theorem of logic KT iff A is valid in any structure where R is reflexive.
- *S*4 logic: contains *KT*4
 - A is a theorem of logic S4 iff A is valid in any structure where R is reflexive and transitive.
- S5 logic: contains KT45
 - A is a theorem of logic S5 iff A is valid in any structure where R is reflexive, transitive and Euclidean (R is an equivalence relation).

Theorems and inference rules

Depend on the schemas and axiomatic systems.

Example: Prove that

•
$$A \rightarrow \Diamond A$$
 is a theorem of $S5$,

•
$$A \rightarrow \Box \Diamond A$$
 is a theorem of $S5$,

•
$$RM : \frac{A \rightarrow B}{\Box A \rightarrow \Box B}$$
 is an inference rule of S5.

Algebraic approach for semantics

- Truth values can take other values than 0 and 1.
- \blacksquare \Rightarrow multi-valued logics.
- Example: Lukasiewicz' 3-valued logic

Is there an algorithm able to answer yes or no?

- Propositional logic: establishing that a formula is a tautology, that it is satisfiable, or that it is a consequence of a set of formulas are all decidable.
- First order logic: not decidable in general.
- Modal logic: decidable it if has the finite model property (i.e. every non-theorem is false in some finite model) and is axiomatizable by a finite number of schemas (ex: KT, KT4...).

- B. Chellas Modal Logic. Cambridge University Press, 1980.
- G. Dowek La logique. Poche Le Pommier, 2015.
- M. Freund Logique et raisonnemment. Ellipses, 2016.
- P. Gochet, P. Gribomont, A. Thayse Logique, méthodes pour l'intelligence artificielle. Hermes Science, 2000.
- P. Marquis, O. Papini, H. Prade (Ed.) Panorama de l'intelligence artificielles. Cepadues, 2014.
 - A Guided Tour of Artificial Intelligence Research. Springer, 2020.
- S. Russell and P. Norvig Artificial Intelligence. Prentice Hall, 2002.