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Role of logic in AI

For 2000 years, people tried to codify “human reasoning” and came
up with logic.

AI until the 1980s: mostly designing machines that are able to
represent knowledge and to reason using logic (e.g. rule-based
systems).

Current approach: mostly learning from data.

But how communicate knowledge to a system? (was easier in earlier
systems).

Logic is still of prime importance!

Goals of logic:

1 Knowledge representation (KR).

2 Reasoning.
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Natural language vs logic

Natural language: tricky, sentences are not necessarily true or false, wrong
conclusions are easy...
Logic: restrictive and less flexible but removes ambiguity.

Challenges of KR and reasoning:

representation of commonsense knowledge,

ability of a knowledge-based system to trade-off computational
efficiency for accuracy of inferences,

criteria to decide whether a reasoning is correct or not,

ability to represent and manipulate uncertain knowledge and
information.
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Main components in any logic

Symbols, variables, formulas.

Syntax.

Semantics.

Reasoning.
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1. Propositional logic

Syntax

Propositional symbols or variables (atomic formulas): p, q, r ....

Connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction), →
(implication), ↔ (double implication).

Formulas: propositional variables, combination of formulas using
connectives (and no others).

Semantics Interpretation of a formula:

v : F → {0, 1}

0 = false, 1 = true (truth value)
World = assignment to all variables
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p q ¬p p ∧ q p ∨ q p → q p ↔ q

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Notation: A ≡ B iff A and B have the same truth tables.

Tautology >: always true.
Antilogy or contradiction ⊥: always false.

Determining the truth value of a formula: using decomposition trees.

Prove that (A→ (B ∨ C )) ∨ (A→ B) is not a tautology.
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Some useful equivalences:

¬(A ∨ B) ≡ ¬A ∧ ¬B

¬(A ∧ B) ≡ ¬A ∨ ¬B

A→ B ≡ ¬A ∨ B

A ∨ ¬A ≡ >

A ∧ ¬A ≡ ⊥

A→ A ≡ >

A ∧ > ≡ A

A ∨ ⊥ ≡ A

...
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Find the right negation...
Tintin - On a marché sur la Lune - Hergé, Casterman, 1954.

1 Le cirque Hipparque a besoin de deux clowns, vous feriez parfaitement
l’affaire (a ∧ b).

2 Le cirque Hipparque n’a pas besoin de deux clowns, vous ne pouvez
donc pas faire l’affaire.
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Other connectives

nor p ↓ q = ¬(p ∨ q)

nand p ↑ q = ¬(p ∧ q)

xor p ⊕ q iff one and only one of the two propositions is true.

Example: prove that p ⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) ≡ ¬(p ↔ q)
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Finite languages

Finite set of propositional variables {p1...pn}.
Infinite set of formulas, but finite set of non-equivalent formulas.

Complete formula: q1 ∧ ... ∧ qn where ∀n, qi = pi or qi = ¬pi .
Disjunctive Normal Form (DNF): disjunction of complete formulas.

By duality: Conjunctive Normal Form (CNF).

Any formula of the language can be written as an equivalent formula
in DNF (or CNF).

Example: Write in DNF form the formula (p ∨ q) ∧ r .
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Knowledge representation: example
w : the grass is wet.
r : it was raining.
s: sprinkle was on.

KB = {r → w , s → w}

Models: {w , r , s} (stands for v(w) = 1, v(r) = 1, v(s) = 1), {w ,¬r , s},
{¬w ,¬r ,¬s}...
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Axioms and inference rules
For ¬ and →:

A1 : A→ (B → A)

A2 : (A→ (B → C ))→ ((A→ B)→ (A→ C ))

A3 : (¬A→ ¬B)→ (B → A)

Note that A ∨ B ≡ ¬A→ B, A ∧ B ≡ ¬(A→ ¬B).

Modus ponens:
A,A→ B

B

⇒ Deductive system S for proving theorems.
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Consequence relation `
H ` C iff C can be proved from H using a deduction system S .

Theorem ` T (without hypotheses)

A ` B iff ` (A→ B)

Theorems of propositional logic are exactly the tautologies (completeness
and non-contradiction).
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Deduction rules using elimination and introduction

Elimination Introduction

Conjunction P∧Q
P and P∧Q

Q
P,Q
P∧Q

Disjunction P∨Q,P`M,Q`M
M

P
P∨Q and Q

P∨Q

Implication P,P→Q
Q

P`Q
P→Q

Negation P,¬P
⊥

P`⊥
¬P

Example: prove that {p → (q ∧ r), p} ` r
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Satisfiability: A is true in the world m (m is a model for A, m satisfies A)

m |= A

For a knowledge base: KB is satisfiable iff ∃m,∀ϕ ∈ KB,m |= ϕ (i.e.
Mod(KB) 6= ∅).

m |= A ∧ B iff m |= A and m |= B
m |= A ∨ B iff m |= A or m |= B
m |= ¬A iff m 6|= A
m |= A→ B iff m |= ¬A or m |= B
A tautology iff ∀m,m |= A
A→ B tautology iff ∀m,m |= A implies m |= B

A ` B iff m |= A implies m |= B
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Checking the satisfiability of a formula

Truth table (2n lines for n variables).

Decomposition to check only relevant cases.

Rewritting the formula to simplify its syntax.

Tableau method.

Example of the formula on Page 6: (A→ (B ∨ C )) ∨ (A→ B)

Extends to a knowledge base (set of formulas) KB, considered as a
conjunction of formulas:

∧
KB =

∧
ϕ∈KB ϕ
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Tableau method
= an example of computational procedure

Tableau = binary tree

built from an initial set of formulas

using construction rules

Construction (or expansion) rules:
For l1, l2 literals:

(l1 ∧ l2) =⇒ (l1, l2)

(l1 ∨ l2) =⇒ (l1 | l2)

(l1 → l2) =⇒ (¬l1 | l2)

where | indicates two separated branches

¬¬l1 =⇒ l1
¬(l1 ∧ l2) =⇒ ¬l1 ∨ ¬l2
¬(l1 ∨ l2) =⇒ ¬l1 ∧ ¬l2

Branch = decomposition sequence until a node with only atomic
propositions and their negations is reached.
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Example: T = {a, ¬a ∨ b, ¬b ∨ c} – several possibilities

a, ¬a ∨ b, ¬b ∨ c

a, ¬b ∨ c
¬a

�

a, ¬b ∨ c
b

a, b
¬b

�

a, b
c

a, ¬b ∨ c, ¬a ∨ b

a, ¬a ∨ b
¬b

a
¬b
¬a

�

a
¬b
b

�

a, ¬a ∨ b
c

a
c
¬a

�

a
c
b

I. Bloch Symbolic AI 18 / 46



Knowledge representation: example (cont’d)
w : the grass is wet.
r : it was raining.
s: sprinkle was on.

KB = {r → w , s → w ,¬w}

Can we deduce ¬r from KB?
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Consistent formulas

A consistent with B if A 6` ¬B

Equivalent expressions:

B consistent with A.

∃m,m |= A and m |= B.

A ∧ B satisfiable.
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2. Predicate logic, first order logic

Representation of entities (objects) and their properties, and relations
among such entities.

More expressive than propositional logic.

Use of quantifiers (∀, ∃).

Predicates used to represent a property or a relation between entities.

Example of syllogism:

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.
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Syntax
Formulas are built from:

Constants a, b...

Variables x , y , z ...

Elementary terms are constants and variables.

Functions: apply to terms to generate new terms.

Predicates: apply to terms, as relational expressions (do not create
new terms).

Logical connectives: apply on formulas.

Quantifiers: allow the representation of properties that hold for a
collection of objects. For a variable x :

Universal: ∀xP (for all x the property P holds).
Existential: ∃xP (P holds for some x).
¬(∀xP) ≡ ∃x(¬P), ¬(∃xP) ≡ ∀x(¬P).
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Atomic formulas: All formulas that can be obtained by applying a
predicate.
Formulas of the first order language: built from atomic formulas,
connectives and quantifiers.
Free variable: has at least one non-quantified occurrence in a formula.
Bound variable: has at least one quantified occurrence.
Closed formula: does not contain any free variable.

Examples:

∃xp(x , y , z) ∨ (∀z(q(z)→ r(x , z))
x and z are both free and bound, y is free and not bound.

∀x∃y((p(x , y)→ ∀zr(x , y , z)) is a closed formula.
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Formula in prenex form: all quantifiers at the beginning.

Write in prenex form the following formula:

∀xF → ∃xG
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Axioms and inference rules
Same as in propositional logic, plus:

A4 : (∀xF (x))→ F (t/x)

where t replaces x in F (t/x) (substitution)

A5 : (∀x(F → G ))→ (F → ∀xG ) for x non-free in F

Generalization:
F

∀xF
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Proofs, consequences, theorems
Same definitions as in propositional logic.
Deduction theorem:

F ` G iff ` (F → G )

Socrates’ syllogism:

Predicate H(x): x is a men.

Functional symbol s: Socrates.

Predicate M(x): x is mortal.

From A4 and modus ponens:

∀x(H(x)→ M(x)),H(s)

M(s)
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Deduction rules using additional elimination and introduction for ∀ and ∃

Elimination Introduction

∀ ∀xF (x)
F (t/x)

F
∀xF (x)

∃ ∃xF ,F→G
G (if x non-free in G ) F (t)

∃xF (x)

Prove that
∃x(F (x) ∨ G (x)) ` (∃xF (x)) ∨ (∃xG (x))
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Structures, interpretations and models
Establishing the validity of a formula requires an interpretation!
Structure: M = (D, I )

D: non-empty domain,

I : interpretation in D of the symbols of the language

maps every functional symbol to a function in D with the same arity,
maps every relational symbol to a predicate in D with the same arity.

For a closed formula F :

M |= F if the interpretation of F is true in M

For a free formula F (x), and a ∈ D:

M |= F (a) if the interpretation of F (a) is true in M
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Example

Constant a

Unary functional symbol f

Binay relational symbol P

T = {F1,F2,F3} with

F1 =∀x∀y∀z(P(x , y) ∧ P(y , z)→ P(x , z)) (1)

F2 =∀xP(a, x) (2)

F3 =∀xP(x , f (x)) (3)

For M = {N, 0, x2,≤}, we have M |= T .
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Properties for closed formulas F and G :

M |= ¬F iff M 6|= F
M |= (F ∧ G ) iff M |= F and M |= G
M |= (F ∨ G ) iff M |= F or M |= G
M |= (F → G ) iff M 6|= F or M |= G

Properties for F (x) and G (x) having x as free variable:

M |= ¬F (a) iff M 6|= F (a)
M |= (F ∧ G )(a) iff M |= F (a) and M |= G (a)
M |= (F ∨ G )(a) iff M |= F (a) or M |= G (a)
M |= (F → G )(a) iff M 6|= F (a) or M |= G (a)
M |= ∀xF (x) iff ∀a ∈ D,M |= F (a)
M |= ∃xF (x) iff ∃a ∈ D,M |= F (a)
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Logically (universally) valid formulas: whose interpretation is true in all
structures.

F and G are equivalent iff they have the same models.

Completeness: ` T iff M |= T for any structure M.

Deduction theorem + completeness: F ` G iff any model of F is a model
of G .
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Properties of the consequence relation:

1 Reflexivity: F ` F

2 Logical equivalence: if F ≡ G and F ` H, then G ` H

3 Transitivity: if F ` G and G ` H, then F ` H

4 Cut: if F ∧ G ` H and F ` G , then F ` H

5 Disjunction of antecedents: if F ` H and G ` H, then F ∨ G ` H

6 Monotony: if F ` H, then F ∧ G ` H

Note: same as in propositional logic.
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3. Modals Logics

Back to Aristotle:

possible =

{
can be or not be
contingent

Three modalities: necessary, impossible, contingent (mutually
incompatible).

Carnap: semantics of possible worlds.

Kripke: accessibility relation between possible worlds.
Many different modal logics, e.g.:

deontic logic,
temporal logic,
epistemic logic,
dynamic logic,
logic of places,
...

Here: bases of propositional modal logic
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Modalities

Modify the meaning of a proposition.

Formalize modalities of the natural language.

Universal modal operator � = necessity.

Existential modal operator: ♦ = possibility.

Examples:

�A - Necessity ♦A - Possibility

It is necessary that A It is possible that A
It will be always true that A It will sometimes be true that A
It must be that A It is allowed that A
It is known that A The inverse of A is not known
... ...
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Syntax

All the syntax of propositional logic.

If A is a formula, then �A and ♦A are formulas.

Duality constraint: ♦A ≡ ¬�¬A.
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Semantics

P: atoms of a modal language.

Structure F = (W ,R)

W = non-empty universe of possible worlds,
R ⊆W ×W = accessibility relation.

Model M = (W ,R,V ) with

V : P → 2W

p 7→ V (p)

V (p) = subset of W where p is true.

Notation M |=ω A: A is true at ω in the model M.
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M |=ω >
M 6|=ω ⊥
M |=ω p iff ω ∈ V (p)

M |=ω ¬A iff M 6|=ω A

M |=ω A1 ∧ A2 iff M |=ω A1 and M |=ω A2

M |=ω A1 ∨ A2 iff M |=ω A1 or M |=ω A2

M |=ω A1 → A2 iff M |=ω A1 implies M |=ω A2

M |=ω �A iff ωRt implies M |=t A for all t ∈W

M |=ω ♦A iff M |=t A for at least a t ∈W such that ωRt
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Valid formula

A is valid in a model M if M |=ω A for all w ∈W (notation:
M |= A).

A is valid in a structure F if it is valid in any model having this
structure (notation: F |= A).

A is valid if it is valid in any structure (notation: |= A).
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A simple example
P = {p, q, r}

2

34

1ω
ω

ωω

p, q, r p

r
p, r

M: W = {ω1, ω2, ω3, ω4}, V as in the figure,
R = {(ω1, ω2), (ω2, ω2), (ω2, ω3), (ω3, ω2), (ω3, ω4), (ω1, ω4)}.
Prove that

M |=ω2 �p

M |=ω1 ♦(r ∧�q)
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Schemas
K �(A→ B)→ (�A→ �B)
P A→ �A
L �(�A→ A)→ �A
M �♦A→ ♦�A

T �A→ A
B A→ �♦A
D �A→ ♦A
4 �A→ ��A
5 ♦A→ �♦A
...
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Validity of schemas

Validity of iff R is
T reflexive ∀s, sRs
B symmetric ∀s, t, sRT implies tRs
D reproductive or serial ∀s,∃t, sRt
4 transitive ∀s, t, u, sRt and tRu implies sRu
5 Euclidean ∀s, t, u, sRt and sRu implies tRu
...

Example: prove that �A→ A is valid iff R is reflexive.
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Typical examples

Normal logics: contain K and the necessity inference rule RN : A
�A .

A is a theorem of logic K iff A is valid.

KT logic

A is a theorem of logic KT iff A is valid in any structure where R is
reflexive.

S4 logic: contains KT4

A is a theorem of logic S4 iff A is valid in any structure where R is
reflexive and transitive.

S5 logic: contains KT45

A is a theorem of logic S5 iff A is valid in any structure where R is
reflexive, transitive and Euclidean (R is an equivalence relation).
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Theorems and inference rules
Depend on the schemas and axiomatic systems.

Example: Prove that

A→ ♦A is a theorem of S5,

A→ �♦A is a theorem of S5,

RM : A→B
�A→�B is an inference rule of S5.
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Algebraic approach for semantics

Truth values can take other values than 0 and 1.

⇒ multi-valued logics.

Example: Lukasiewicz’ 3-valued logic
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Decidability

Is there an algorithm able to answer yes or no?

Propositional logic: establishing that a formula is a tautology, that it
is satisfiable, or that it is a consequence of a set of formulas are all
decidable.

First order logic: not decidable in general.

Modal logic: decidable it if has the finite model property (i.e. every
non-theorem is false in some finite model) and is axiomatizable by a
finite number of schemas (ex: KT, KT4...).
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