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Imprecision and fuzziness

usual way of speaking (ex: a young person)

objects (no clear boundaries, coarse segmentation...)

relations (ex: left of, quite close)

observations (ex: it is raining moderately)

type of knowledge available (ex: the caudate nucleus is close to the
lateral ventricle)

question to be answered (ex: go towards this object while remaining
at some security distance)

...
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Definitions: fuzzy sets (L. Zadeh, 1965)

Space S (image space, space of characteristics, etc.)

Fuzzy set: µ : S → [0, 1] – µ(x) = membership degree of x to µ

Support: Supp(µ) = {x ∈ S, µ(x) > 0}
Core / kernel: {x ∈ S, µ(x) = 1}
α-cut: µα = {x ∈ S, µ(x) ≥ α}
Cardinality: |µ| =

∑
x∈S µ(x) (for S finite)

Convexity:
∀(x , y) ∈ S2,∀λ ∈ [0, 1], µ(λx + (1− λ)y) ≥ min(µ(x), µ(y))

Fuzzy number: convex fuzzy set on R, u.s.c., unimodal, with compact
support. Example: LR-fuzzy sets.
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First basic operations (L. Zadeh, 1965)

Equality: µ = ν ⇔ ∀x ∈ S, µ(x) = ν(x)

Inclusion: µ ⊆ ν ⇔ ∀x ∈ S, µ(x) ≤ ν(x)

Intersection: ∀x ∈ S, (µ ∩ ν)(x) = min(µ(x), ν(x))

Union: ∀x ∈ S, (µ ∪ ν)(x) = max(µ(x), ν(x))

Complementation: ∀x ∈ S, µC (x) = 1− µ(x)

Properties:
consistency with binary set operations
µ = ν ⇔ µ ⊆ ν and ν ⊆ µ
fuzzy complementation is involutive: (µC )C = µ
intersection and union are commutative and associative
intersection and union are idempotent and mutually distributive
intersection and union are dual with respect to the complementation:
(µ ∩ ν)C = µC ∪ νC
(µ ∪ ν)α = µα ∪ να, etc.

BUT: µ ∩ µC 6= ∅, µ ∪ µC 6= S
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Definitions: possibility theory (L. Zadeh, D. Dubois, H.
Prade

Possibility measure: function Π from 2S into [0, 1] such that:

1 Π(∅) = 0

2 Π(S) = 1

3 ∀I ⊆ N,∀Ai ⊆ S(i ∈ I ), Π(∪i∈IAi ) = supi∈I Π(Ai )

Necessity measure: ∀A ⊆ S, N(A) = 1− Π(AC )

1 N(∅) = 0

2 N(S) = 1

3 ∀I ⊆ N,∀Ai ⊆ S(i ∈ I ), N(∩i∈IAi ) = inf i∈I N(Ai )

Useful properties:

max(Π(A),Π(AC )) = 1, min(N(A),N(AC )) = 0

Π(A) ≥ N(A)

N(A) > 0⇒ Π(A) = 1, Π(A) < 1⇒ N(A) = 0

N(A) + N(AC ) ≤ 1, Π(A) + Π(AC ) ≥ 1
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Possibility distribution: function π from S into [0, 1] with the
normalization condition supx∈S π(x) = 1

Interpretation of π as the membership function defining the fuzzy set
of possible values.

In the finite case: Π(A) = sup{π(x), x ∈ A} (for A ⊆ S)
Conversely: ∀x ∈ S, π(x) = Π({x})
N(A) = 1− sup{π(x), x /∈ A} = inf{1− π(x), x ∈ AC}
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Semantics

Degree of similarity (notion of distance).

Degree of plausibility (that an object from which only an imprecise
description is known is actually the one one wants to identify).

Degree of preference (fuzzy class = set of “good” choices), close to
the notion of utility function.
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Representing different types of imperfection

no imperfection ambiguity imprecision

lack of confidence ignorance all together
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Set theoretical operations

Fuzzy complementation / negation
function c from [0, 1] into [0, 1] such that:

1 c(0) = 1

2 c(1) = 0

3 c is involutive, i.e. ∀x ∈ [0, 1], c(c(x)) = x

4 c is strictly decreasing

General form of continuous complementations: c(x) = ϕ−1(1−ϕ(x)) with
ϕ : [0, 1]→ [0, 1], ϕ(0) = 0, ϕ(1) = 1, ϕ strictly increasing.

Example: ϕ(x) = xn ⇒ c(x) = (1− xn)1/n
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Triangular norms: fuzzy intersection / conjunction
t-norm t : [0, 1]× [0, 1]→ [0, 1] such that:

1 commutativity, i.e. ∀(x , y) ∈ [0, 1]2, t(x , y) = t(y , x);

2 associativity, i.e. ∀(x , y , z) ∈ [0, 1]3, t(t(x , y), z) = t(x , t(y , z));

3 1 is unit element, i.e. ∀x ∈ [0, 1], t(x , 1) = t(1, x) = x ;

4 increasingness with respect to the two variables:

∀(x , x ′, y , y ′) ∈ [0, 1]4, (x ≤ x ′ and y ≤ y ′)⇒ t(x , y) ≤ t(x ′, y ′).

Moreover: t(0, 1) = t(0, 0) = t(1, 0) = 0, t(1, 1) = 1, and 0 is null
element (∀x ∈ [0, 1], t(x , 0) = 0).

Examples of t-norms: min(x , y), xy , max(0, x + y − 1).
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Triangular conorms: fuzzy union / disjunction
t-conorm T : [0, 1]× [0, 1]→ [0, 1] such that:

1 commutativity, i.e. ∀(x , y) ∈ [0, 1]2, T (x , y) = T (y , x);

2 associativity, i.e. ∀(x , y , z) ∈ [0, 1]3, T (T (x , y), z) = T (x ,T (y , z));

3 0 is unit element, i.e. ∀x ∈ [0, 1], T (x , 0) = T (0, x) = x ;

4 increasingness with respect to the two variables

Moreover: T (0, 1) = T (1, 1) = T (1, 0) = 1, T (0, 0) = 0, and 1 is null
element (∀x ∈ [0, 1],T (x , 1) = 1).

Examples of t-conorms: max(x , y), x + y − xy , min(1, x + y).

Duality: pair (t,T ) such that ∀(x , y) ∈ [0, 1]2, T (c(x), c(y)) = c(t(x , y))

Other combination operators (mean, symmetrical sums, etc.) ⇒
information fusion

I. Bloch Symbolic AI 12 / 27



max(x , y) x + y − xy

min(1, x + y) x if y = 0, y if x = 0, 1 otherwise
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Linguistic variable (L. Zadeh)

size

M

U

membership
functions

semantic rules

linguistic variable

syntactic rules

terms{very small, small, medium, large, very large}

I. Bloch Symbolic AI 14 / 27



Imprecise reasoning

Difference between data and knowledge

Classical logic:

language
semantics (interpretations, truth values)
syntax (axioms and inference rules)

Human reasoning: flexible, allows for imprecise statements

Gradual predicates:

continuous referential
typicality

Examples: this person is young, this person is rather young... –
Propositions that can be neither completely true nor completely false.
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Uncertainty

= unable to say whether a proposition is true or not

because information is incomplete, vague, imprecise
⇒ possibility

because information is contradicting or fluctuating
⇒ probability

certainty degree 6= truth degree

”It is probable that he ”He is very far
is far from his goal” from his goal”

Fuzzy logic: propositions with truth degrees

Possibilistic logic: propositions with (un)certainty degrees
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Fuzzy logic

Basic fuzzy propositions: X is P
X = variable taking values in U
P = fuzzy subset of U
Truth degrees in [0, 1] defined from µP
Conjunction: X is A and Y is B

µA∧B(x , y) = t(µA(x), µB(y))

Disjunction: X is A or Y is B

µA∨B(x , y) = T (µA(x), µB(y))

Negation
µ¬A(x) = c(µA(x))

Variables in a product space: X with values in U , Y with values V ⇒
conjunction = Cartesian product: X is A and Y is B

µA×B(x , y) = t(µA(x), µB(y))
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Fuzzy implications

Classical propositional logic: (A→ B) ≡ (B ∨ ¬A)
Fuzzy logic: implication from a negation and a t-conorm

A and B crisp:
I (A,B) = T (c(A),B)

A and B fuzzy:

I (A,B) = inf
x
T (c(µA(x)), µB(x))

Examples (c(a) = 1− a):

T (a, b) = max(a, b) I (a, b) = max(1− a, b) Kleene-Diene
T (a, b) = min(1, a + b) I (a, b) = min(1, 1− a + b) Lukasiewicz
T (a, b) = a + b − ab I (a, b) = 1− a + ab Reichenbach

Fuzzy logic: residual implications from a t-norm

I (A,B) = sup{X | t(X ,A) ≤ B}

Adjunction: t(X ,A) ≤ B ⇔ X ≤ I (A,B)
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Fuzzy reasoning

Classical propositional logic

Modus ponens: (A ∧ (A→ B)) ` B
Modus tollens: ((A→ B) ∧ ¬B) ` ¬A
Syllogism: ((A→ B) ∧ (B → C )) ` (A→ C )
Cuntraposition: (A→ B) ` (¬B → ¬A)
...

Fuzzy (generalized) modus ponens

Rule :
if X is A then Y is B

Knowledge or observation:
X is A′

Conclusion:
Y is B ′

µB′(y) = sup
x

t(µA′(x), I (µA(x), µB(y)))
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Fuzzy rules

IF (x is A AND y is B) THEN z is C

IF (x is A OR y is B) THEN z is C

...

α: truth degree of x is A
β: truth degree of y is B
γ: truth degree of z is C

Satisfaction degree of the rule:

I (t(α, β), γ) = T (c(t(α, β)), γ))

I (T (α, β), γ) = T (c(T (α, β)), γ))

...
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Example in image filtering

IF a pixel is darker than its neighbors
THEN increase its grey level
ELSE IF a pixel is brighter than its neighbors
THEN decrease its grey level
ELSE unchanged

F. Russo et al.
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Possibilistic logic

Possibility measure on a Boolean algebra of logical formulas:
Π : B → [0, 1] such that:

Π(⊥) = 0
Π(>) = 1
∀ϕ, φ, Π(ϕ ∨ ψ) = max(Π(ϕ),Π(ψ))
∀ϕ, Π(∃xϕ) = sup{Π(ϕ[a|x ]), a ∈ D(x)} (with D(x) = domain of
variable x , and ϕ[a|x ] obtained by replacing occurrences of x in ϕ by a)

Normalized possibility distribution: π : Ω→ [0, 1] such that
∃ω ∈ Ω, π(ω) = 1 (Ω = set of interpretations)

Π(ϕ) = sup{π(ω), ω |= ϕ}
Necessity measure:

N(ϕ) = 1− Π(¬ϕ)

∀ϕ, φ, N(ϕ ∧ ψ) = min(N(ϕ),N(ψ))
Example: default rule ”if A then B”

Π(A ∧ B) ≥ Π(A ∧ ¬B)
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Possibilistic modus ponens

Rule:
N(A→ B) = α

Knowledge or observation:

N(A) = β

Conclusion:
min(α, β) ≤ N(B) ≤ α
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Stratified knowledge bases

KB = {(ϕi , αi ), i = 1...n}

αi ∈ (0, 1] : certainty degree or priority of the (propositional) formula
ϕi

means N(ϕi ) ≥ αi

knowledge: one is certain at level αi that ϕi is true
preference: goal ϕi with priority αi

Representation as a possibility distribution on the set of interpretations Ω
(induced by the underlying propositional logic):

for one formula (ϕ, α):

∀ω ∈ Ω, π(ϕ,α)(ω) =

{
1 if ω |= ϕ
1− α otherwise

for the knowledge base:

∀ω ∈ Ω, πKB(ω) = min
i=1...n

{1−αi , ω |= ¬ϕi} = min
i=1...n

max(1−αi , ϕi (ω)}
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Example of inference rule:

((¬p ∨ q, α); (p ∨ r , β)) ` (q ∨ r ,min(α, β))

Inconsistency degree of KB : 1−maxω∈Ω πKB(ω)

Complete base: ∀ϕ, either KB ` ϕ, or KB ` ¬ϕ
Ignorance on ϕ: KB 6` ϕ and KB 6` ¬ϕ
⇒ simplest possibilistic model:

Π(ϕ) = Π(¬ϕ) = 1
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