Fuzzy Logic

Isabelle Bloch

LIP6, Sorbonne Université - LTCI, Télécom Paris
(iii) SORBONNE UNIVERSITÉ
isabelle.bloch@sorbonne-universite.fr, isabelle.bloch@telecom-paris.fr

Imprecision and fuzziness

- usual way of speaking (ex: a young person)
- objects (no clear boundaries, coarse segmentation...)
- relations (ex: left of, quite close)
- observations (ex: it is raining moderately)
- type of knowledge available (ex: the caudate nucleus is close to the lateral ventricle)
- question to be answered (ex: go towards this object while remaining at some security distance)
...

Definitions: fuzzy sets (L. Zadeh, 1965)

■ Space \mathcal{S} (image space, space of characteristics, etc.)
■ Fuzzy set: $\mu: \mathcal{S} \rightarrow[0,1]-\mu(x)=$ membership degree of x to μ

- Support: $\operatorname{Supp}(\mu)=\{x \in \mathcal{S}, \mu(x)>0\}$

■ Core / kernel: $\{x \in \mathcal{S}, \mu(x)=1\}$

- α-cut: $\mu_{\alpha}=\{x \in \mathcal{S}, \mu(x) \geq \alpha\}$

■ Cardinality: $|\mu|=\sum_{x \in \mathcal{S}} \mu(x)$ (for \mathcal{S} finite)

- Convexity:
$\forall(x, y) \in \mathcal{S}^{2}, \forall \lambda \in[0,1], \mu(\lambda x+(1-\lambda) y) \geq \min (\mu(x), \mu(y))$
■ Fuzzy number: convex fuzzy set on \mathbb{R}, u.s.c., unimodal, with compact support. Example: LR-fuzzy sets.

First basic operations (L. Zadeh, 1965)

■ Equality: $\mu=\nu \Leftrightarrow \forall x \in \mathcal{S}, \mu(x)=\nu(x)$
■ Inclusion: $\mu \subseteq \nu \Leftrightarrow \forall x \in \mathcal{S}, \mu(x) \leq \nu(x)$

- Intersection: $\forall x \in \mathcal{S},(\mu \cap \nu)(x)=\min (\mu(x), \nu(x))$
- Union: $\forall x \in \mathcal{S},(\mu \cup \nu)(x)=\max (\mu(x), \nu(x))$

■ Complementation: $\forall x \in \mathcal{S}, \mu^{C}(x)=1-\mu(x)$

- Properties:
- consistency with binary set operations
- $\mu=\nu \Leftrightarrow \mu \subseteq \nu$ and $\nu \subseteq \mu$
- fuzzy complementation is involutive: $\left(\mu^{C}\right)^{C}=\mu$
- intersection and union are commutative and associative
- intersection and union are idempotent and mutually distributive
- intersection and union are dual with respect to the complementation:
$(\mu \cap \nu)^{C}=\mu^{C} \cup \nu^{C}$
■ $(\mu \cup \nu)_{\alpha}=\mu_{\alpha} \cup \nu_{\alpha}$, etc.
BUT: $\mu \cap \mu^{C} \neq \emptyset, \mu \cup \mu^{C} \neq \mathcal{S}$

Definitions: possibility theory (L. Zadeh, D. Dubois, H. Prade

Possibility measure: function Π from $2^{\mathcal{S}}$ into $[0,1]$ such that:
$1 \Pi(\emptyset)=0$
$2 \Pi(\mathcal{S})=1$
$3 \forall I \subseteq N, \forall A_{i} \subseteq \mathcal{S}(i \in I), \Pi\left(\cup_{i \in I} A_{i}\right)=\sup _{i \in I} \Pi\left(A_{i}\right)$
Necessity measure: $\forall A \subseteq \mathcal{S}, N(A)=1-\Pi\left(A^{C}\right)$
$1 N(\emptyset)=0$
$2 \quad N(\mathcal{S})=1$
3 $\forall I \subseteq N, \forall A_{i} \subseteq \mathcal{S}(i \in I), N\left(\cap_{i \in I} A_{i}\right)=\inf _{i \in I} N\left(A_{i}\right)$
Useful properties:
$\square \max \left(\Pi(A), \Pi\left(A^{C}\right)\right)=1, \quad \min \left(N(A), N\left(A^{C}\right)\right)=0$

- $\Pi(A) \geq N(A)$
- $N(A)>0 \Rightarrow \Pi(A)=1, \quad \Pi(A)<1 \Rightarrow N(A)=0$
- $N(A)+N\left(A^{C}\right) \leq 1, \quad \Pi(A)+\Pi\left(A^{C}\right) \geq 1$

Possibility distribution: function π from \mathcal{S} into $[0,1]$ with the normalization condition $\sup _{x \in \mathcal{S}} \pi(x)=1$

■ Interpretation of π as the membership function defining the fuzzy set of possible values.
■ In the finite case: $\Pi(A)=\sup \{\pi(x), x \in A\}($ for $A \subseteq \mathcal{S})$
Conversely: $\forall x \in \mathcal{S}, \pi(x)=\Pi(\{x\})$
■ $N(A)=1-\sup \{\pi(x), x \notin A\}=\inf \left\{1-\pi(x), x \in A^{C}\right\}$

Semantics

- Degree of similarity (notion of distance).

■ Degree of plausibility (that an object from which only an imprecise description is known is actually the one one wants to identify).
■ Degree of preference (fuzzy class = set of "good" choices), close to the notion of utility function.

Representing different types of imperfection

Set theoretical operations

Fuzzy complementation / negation
function c from $[0,1]$ into $[0,1]$ such that:
$1 c(0)=1$
$2 c(1)=0$
$3 c$ is involutive, i.e. $\forall x \in[0,1], c(c(x))=x$
$4 c$ is strictly decreasing
General form of continuous complementations: $c(x)=\varphi^{-1}(1-\varphi(x))$ with $\varphi:[0,1] \rightarrow[0,1], \varphi(0)=0, \varphi(1)=1, \varphi$ strictly increasing.

Example: $\varphi(x)=x^{n} \Rightarrow c(x)=\left(1-x^{n}\right)^{1 / n}$

Triangular norms: fuzzy intersection / conjunction t-norm $t:[0,1] \times[0,1] \rightarrow[0,1]$ such that:
1 commutativity, i.e. $\forall(x, y) \in[0,1]^{2}, t(x, y)=t(y, x)$;
2 associativity, i.e. $\forall(x, y, z) \in[0,1]^{3}, t(t(x, y), z)=t(x, t(y, z))$;
31 is unit element, i.e. $\forall x \in[0,1], t(x, 1)=t(1, x)=x$;
4 increasingness with respect to the two variables:

$$
\forall\left(x, x^{\prime}, y, y^{\prime}\right) \in[0,1]^{4},\left(x \leq x^{\prime} \text { and } y \leq y^{\prime}\right) \Rightarrow t(x, y) \leq t\left(x^{\prime}, y^{\prime}\right)
$$

Moreover: $t(0,1)=t(0,0)=t(1,0)=0, t(1,1)=1$, and 0 is null element $(\forall x \in[0,1], t(x, 0)=0)$.

Examples of t-norms: $\min (x, y), x y, \max (0, x+y-1)$.

Triangular conorms: fuzzy union / disjunction t -conorm $T:[0,1] \times[0,1] \rightarrow[0,1]$ such that:
1 commutativity, i.e. $\forall(x, y) \in[0,1]^{2}, T(x, y)=T(y, x)$;
2 associativity, i.e. $\forall(x, y, z) \in[0,1]^{3}, T(T(x, y), z)=T(x, T(y, z))$;
30 is unit element, i.e. $\forall x \in[0,1], T(x, 0)=T(0, x)=x$;
4 increasingness with respect to the two variables
Moreover: $T(0,1)=T(1,1)=T(1,0)=1, T(0,0)=0$, and 1 is null element $(\forall x \in[0,1], T(x, 1)=1)$.

Examples of t-conorms: $\max (x, y), x+y-x y, \min (1, x+y)$.
Duality: pair (t, T) such that $\forall(x, y) \in[0,1]^{2}, T(c(x), c(y))=c(t(x, y))$
Other combination operators (mean, symmetrical sums, etc.) \Rightarrow information fusion

Linguistic variable (L. Zadeh)

Imprecise reasoning

■ Difference between data and knowledge

- Classical logic:

■ language
■ semantics (interpretations, truth values)

- syntax (axioms and inference rules)

■ Human reasoning: flexible, allows for imprecise statements

- Gradual predicates:
- continuous referential

■ typicality
Examples: this person is young, this person is rather young... Propositions that can be neither completely true nor completely false.

Uncertainty

$=$ unable to say whether a proposition is true or not

■ because information is incomplete, vague, imprecise \Rightarrow possibility

- because information is contradicting or fluctuating \Rightarrow probability
certainty degree \neq truth degree

> "It is probable that he is far from his goal"
"He is very far from his goal"

■ Fuzzy logic: propositions with truth degrees
■ Possibilistic logic: propositions with (un)certainty degrees

Fuzzy logic

- Basic fuzzy propositions: X is P $X=$ variable taking values in \mathcal{U}
$P=$ fuzzy subset of \mathcal{U}
Truth degrees in $[0,1]$ defined from μ_{P}
- Conjunction: X is A and Y is B

$$
\mu_{A \wedge B}(x, y)=t\left(\mu_{A}(x), \mu_{B}(y)\right)
$$

■ Disjunction: X is A or Y is B

$$
\mu_{A \vee B}(x, y)=T\left(\mu_{A}(x), \mu_{B}(y)\right)
$$

- Negation

$$
\mu_{\neg A}(x)=c\left(\mu_{A}(x)\right)
$$

- Variables in a product space: X with values in \mathcal{U}, Y with values $\mathcal{V} \Rightarrow$ conjunction $=$ Cartesian product: X is A and Y is B

$$
\mu_{A \times B}(x, y)=t\left(\mu_{A}(x), \mu_{B}(y)\right)
$$

Fuzzy implications

- Classical propositional logic: $(A \rightarrow B) \equiv(B \vee \neg A)$
- Fuzzy logic: implication from a negation and a t-conorm
- A and B crisp:

$$
I(A, B)=T(c(A), B)
$$

- A and B fuzzy:

$$
I(A, B)=\inf _{x} T\left(c\left(\mu_{A}(x)\right), \mu_{B}(x)\right)
$$

- Examples $(c(a)=1-a)$:

$T(a, b)=\max (a, b)$	$I(a, b)=\max (1-a, b)$	Kleene-Diene
$T(a, b)=\min (1, a+b)$	$I(a, b)=\min (1,1-a+b)$	Lukasiewicz
$T(a, b)=a+b-a b$	$I(a, b)=1-a+a b$	Reichenbach

■ Fuzzy logic: residual implications from a t-norm

$$
I(A, B)=\sup \{X \mid t(X, A) \leq B\}
$$

Adjunction: $t(X, A) \leq B \Leftrightarrow X \leq I(A, B)$

Fuzzy reasoning

- Classical propositional logic
- Modus ponens: $(A \wedge(A \rightarrow B)) \vdash B$
- Modus tollens: $((A \rightarrow B) \wedge \neg B) \vdash \neg A$
- Syllogism: $((A \rightarrow B) \wedge(B \rightarrow C)) \vdash(A \rightarrow C)$
- Cuntraposition: $(A \rightarrow B) \vdash(\neg B \rightarrow \neg A)$
- Fuzzy (generalized) modus ponens
- Rule :

$$
\text { if } X \text { is } A \text { then } Y \text { is } B
$$

- Knowledge or observation:

$$
X \text { is } A^{\prime}
$$

- Conclusion:

$$
\begin{gathered}
Y \text { is } B^{\prime} \\
\mu_{B^{\prime}}(y)=\sup _{x} t\left(\mu_{A^{\prime}}(x), I\left(\mu_{A}(x), \mu_{B}(y)\right)\right)
\end{gathered}
$$

Fuzzy rules

IF (x is A AND y is B) THEN z is C IF $(x$ is A OR y is B) THEN z is C

α : truth degree of x is A
β : truth degree of y is B
γ : truth degree of z is C
Satisfaction degree of the rule:

$$
\begin{aligned}
I(t(\alpha, \beta), \gamma) & =T(c(t(\alpha, \beta)), \gamma)) \\
I(T(\alpha, \beta), \gamma) & =T(c(T(\alpha, \beta)), \gamma))
\end{aligned}
$$

Example in image filtering

IF
THEN
ELSE IF THEN ELSE
a pixel is darker than its neighbors
increase its grey level
a pixel is brighter than its neighbors decrease its grey level unchanged

NOISY IMAGE

LUMINANCE DIFFERENCES

NOISE-FREE IMAGE
F. Russo et al.

Possibilistic logic

■ Possibility measure on a Boolean algebra of logical formulas:
$\Pi: B \rightarrow[0,1]$ such that:

- $\Pi(\perp)=0$
- $\Pi(\mathrm{T})=1$

■ $\forall \varphi, \phi, \Pi(\varphi \vee \psi)=\max (\Pi(\varphi), \Pi(\psi))$

- $\forall \varphi, \Pi(\exists x \varphi)=\sup \{\Pi(\varphi[a \mid x]), a \in D(x)\}$ (with $D(x)=$ domain of variable x, and $\varphi[a \mid x]$ obtained by replacing occurrences of x in φ by a)
■ Normalized possibility distribution: $\pi: \Omega \rightarrow[0,1]$ such that $\exists \omega \in \Omega, \pi(\omega)=1$ ($\Omega=$ set of interpretations)

$$
\Pi(\varphi)=\sup \{\pi(\omega), \omega \models \varphi\}
$$

- Necessity measure:

$$
N(\varphi)=1-\Pi(\neg \varphi)
$$

$\forall \varphi, \phi, N(\varphi \wedge \psi)=\min (N(\varphi), N(\psi))$
■ Example: default rule "if A then B "

$$
\Pi(A \wedge B) \geq \Pi(A \wedge \neg B)
$$

Possibilistic modus ponens

- Rule:

$$
N(A \rightarrow B)=\alpha
$$

- Knowledge or observation:

$$
N(A)=\beta
$$

- Conclusion:

$$
\min (\alpha, \beta) \leq N(B) \leq \alpha
$$

Stratified knowledge bases

$$
K B=\left\{\left(\varphi_{i}, \alpha_{i}\right), i=1 \ldots n\right\}
$$

- $\alpha_{i} \in(0,1]$: certainty degree or priority of the (propositional) formula φ_{i}
- means $N\left(\varphi_{i}\right) \geq \alpha_{i}$

■ knowledge: one is certain at level α_{i} that φ_{i} is true

- preference: goal φ_{i} with priority α_{i}

Representation as a possibility distribution on the set of interpretations Ω (induced by the underlying propositional logic):

■ for one formula (φ, α) :

$$
\forall \omega \in \Omega, \pi_{(\varphi, \alpha)}(\omega)= \begin{cases}1 & \text { if } \omega \models \varphi \\ 1-\alpha & \text { otherwise }\end{cases}
$$

- for the knowledge base:

$$
\forall \omega \in \Omega, \pi_{K B}(\omega)=\min _{i=1 \ldots . . n}\left\{1-\alpha_{i}, \omega \models \neg \varphi_{i}\right\}=\min _{i=1 \ldots n} \max \left(1-\alpha_{i}, \varphi_{i}(\omega)\right\}
$$

■ Example of inference rule:

$$
((\neg p \vee q, \alpha) ;(p \vee r, \beta)) \vdash(q \vee r, \min (\alpha, \beta))
$$

- Inconsistency degree of $K B: 1-\max _{\omega \in \Omega} \pi_{K B}(\omega)$

■ Complete base: $\forall \varphi$, either $K B \vdash \varphi$, or $K B \vdash \neg \varphi$

- Ignorance on $\varphi: K B \nvdash \varphi$ and $K B \nvdash \neg \varphi$
\Rightarrow simplest possibilistic model:

$$
\Pi(\varphi)=\Pi(\neg \varphi)=1
$$

Some references

家
Benferhat, S., Dubois, D., Prade, H.: Modeling positive and negative information in possibility theory.
International Journal of Intelligent Systems 23(10), 1094-1118 (2008)

Bloch, I.: Information Combination Operators for Data Fusion: A Comparative Review with Classification.
IEEE Transactions on Systems, Man, and Cybernetics 26(1), 52-67 (1996)
Bloch, I.: Fuzzy sets for image processing and understanding. Fuzzy Sets and Systems 281, 280-291 (2015)

Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications.
Academic Press, New-York (1980)
Dubois, D., Prade, H.: A Review of Fuzzy Set Aggregation Connectives. Information Sciences 36, 85-121 (1985)

Dubois, D., Prade, H.: Possibility Theory.
Plenum Press, New-York (1988)

Zadeh, L.A.: Fuzzy Sets.
Information and Control 8, 338-353 (1965)
R
Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning.
Information Sciences 8, 199-249 (1975)
Zadeh, L.A.: Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems 1, 3-28 (1978)

Zadeh, L.A.: Fuzzy Logic $=$ Computing with Words.
IEEE Transactions on Fuzzy Systems 4(2), 103-111 (1996)

