Association Rules

Isabelle Bloch

LIP6, Sorbonne Université - LTCI, Télécom Paris

 $is a belle.bloch@sorbonne-universite.fr,\ is a belle.bloch@telecom-paris.fr\\$

- Data mining.
- Knowledge discovery.
- Automatic construction of rules from examples.
- Frequent patterns.
- Typical example: market basket.

Example

	ltems
1	novel, newspaper
2	novel, film, comics, contemporary music
3	newspaper, film, comics, classical music
4	novel, newspaper, film, comics
5	novel, newspaper, film, classical music

Examples of rules:

- {film } \Rightarrow {comics}
- {newspaper, novel} \Rightarrow {film, classical music}
- {comics, novel} \Rightarrow {newspaper}

Interpretation :

- \blacksquare \Rightarrow means co-occurrence (not causality...)
- $X \Rightarrow Y =$ if attributes of X are present in an example, then so are attributes of Y.

Rule induction:

- Derivation of a set of rules to classify examples.
- Creation of independent rules.
- Rules may not cover all possible cases.
- Rules may be conflicting.

Definitions

- Itemset = collection of items
- k-itemset = itemset that contains k items
- Support count σ = number of occurrences of an itemset
- Support s = Fraction of transactions that contain an itemset
- Frequent itemset = itemset whose support is greater than or equal to a *minsup* threshold

Example

- itemset {newspaper, novel, film}
- $\sigma(\{\text{newspaper, novel, film}\}) = 2$
- $s(\{\text{newspaper, novel, film}\}) = 2/5$

Association rule

Expression of the form $X \Rightarrow Y$ (X and Y: itemsets)

Support of a rule:

$$S(X \Rightarrow Y) = rac{\sigma(X,Y)}{|T|}$$

(|T| total number of records)

Measures the relative frequency of co-occurrences of X and Y.

Confidence in a rule:

$$C(X \Rightarrow Y) = \frac{\sigma(X, Y)}{\sigma(X)}$$

Measures how often items in Y appear in records containing X. Example: {newspaper, film} \Rightarrow {comics}

$$S = \frac{\sigma(\{\text{newspaper, film, comics}\})}{|T|} = \frac{2}{5} = 0.4$$
$$C = \frac{\sigma(\{\text{newspaper, film, comics}\})}{\sigma(\{\text{newspaper, film}\})} = \frac{2}{3} = 0.67$$

Rule mining

Brute force method:

- **1** List all possible association rules.
- **2** Compute S and C for each rule.
- 3 Prune rules for which S < minsup or C < minconf (two preset thresholds).

7 / 18

But intractable in practice...

Example from the same itemset (X, Y):

- {newspaper,film} \Rightarrow {comics} (S = 0.4, C = 0.67)
- {newspaper,comics} \Rightarrow {film} (S = 0.4, C = 1.0)
- {film,comics} \Rightarrow {newspaper} (S = 0.4, C = 0.67)
- {comics} \Rightarrow {newspaper,film} (S = 0.4, C = 0.67)
- {film} \Rightarrow {newspaper,comics} (S = 0.4, C = 0.5)
- {newspaper} \Rightarrow {film,comics} (S = 0.4, C = 0.5)

Same S and different C.

Algorithm based on frequent items

- **1** Frequent itemset generation, with $S \ge minsup$.
- **2** Rule generation, from binary partition of each frequent itemset, and with $C \ge minconf$.

Still computationally expensive!

Lattice of itemsets

Source: Tan, Steinbach, Karpatne, Kumar. Introduction to Data Mining

	Items
1	novel, newspaper
2	novel, film, comics, contemporary music
3	newspaper, film, comics, classical music
4	novel, newspaper, film, comics
5	novel, newspaper, film, classical music
	$\leftarrow W \rightarrow$

Number of potential candidates: $M = 2^d$.

For each candidate itemset: scan the database (N = |T|) to compute the support.

Complexity in O(NwM) ...

How to reduce the complexity?

- Reduce the number of candidates M
 - using pruning
 - example: A Priori Algorithm
- Reduce the number of records N
- Reduce the number of comparisons NM using efficient data structures (e.g. hash tables, frequent pattern tree) that avoid testing every candidate against every record.

A priori principle: If an itemset is frequent, then all of its subsets must also be frequent.

Results from the monotony of the support measure:

$$X \subseteq Y \Rightarrow S(X) \geq S(Y)$$

Source: Tan, Steinbach, Karpatne, Kumar. Introduction to Data Mining

A Priori Algorithm (Rakesh Agrawal and Ramakrishnan Sikrant, 1994)

- **1** Generate the set of frequent items F_1 , k = 1
- **2** k = k + 1
- **3** Generate the set F_k of itemsets of cardinality k in F_{k-1}
- **4** Compute support and prune F_k to keep only the frequent itemsets
- **5** Return to step 2

Example: apply the algorithm to the previous example.

Computing the association rules

- **1** Frequent itemset *L*.
- 2 Compute all non-empty subsets L' ⊂ L (partition L', L \ L' of the itemset).
- **3** Generate the rule $L' \Rightarrow L \setminus L'$ if it has a confidence higher than *confmin*.

4 If $C(L' \Rightarrow L \setminus L') < confmin$, Use the monotony property of C among rules generated by the same itemset to eliminate rules $L'' \Rightarrow L \setminus L''$ with $L'' \subset L'$ (i.e. $L \setminus L' \subset L \setminus L''$).

Example: $C(WXY \Rightarrow Z) \ge C(WX \Rightarrow YZ) \ge C(W \Rightarrow XYZ)$

Source: Tan, Steinbach, Karpatne, Kumar. Introduction to Data Mining

Conclusion

- Non-supervised rule generation.
- Easy interpretation.
- Many algorithms.
- Many extensions (measures for association rules...).
- Extensions to non-binary data:
 - continuous: discretization
 - categorial: new item for each attribute-value pair
 - sequential (in time)
 - ...