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Agenda

» Graphs: representations of spatial entities and spatial relations,
graph-based reasoning.

» Conceptual graphs, constraint satisfaction problems, applications in
scene understanding.

» Stochastic grammars and image parsing.
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You are here!

e Preliminaries
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Graphs for image processing and understanding

Interest
» Structural information. .
» Compact representations. »\\\\% e
> “Efficient" manipulation and reasoning Graph k,e’_;:j%
tools. ey

Conge
"Ptug] (-'r.)p/:s9

v

Theoretical guarantees.

Some applications

> Low-level processing: denoising, segmentation, registration, etc.
e.g. Graph flows.
» Mid-level analysis: object and action recognition, image classification,
indexing, etc.
e.g. Matching, Graph kernels, Graphical models.
» High-level interpretation: semantic interpretation
e.g. Conceptual graphs.
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Graphs for high-level image understanding

Attributed Relational Graph

G: (X7E7I'L?V)

> 4 : X — Lx: vertex interpreter (Lx=vertices attributes).
E.g. objects attributes (color, shape, texture, etc.).

» v :E — Lg: edge interpreter (Lg= edges attributes).
E.g. spatial and/or contrast constraints.

= allows to associate structural, numeric or symbolic information with the elements of the graph
(nodes and edges)

Fuzzy attributed Relational Graph
G= (X7E7H‘fvl/f)
> Kot X — [O, 1]

> Vf :E— [0, 1}
with Vx,y € X x X, vp(x,y) < pe () (y) or vp(x,y) < min(py(x), pr(y))

4

J. Atif, 1. Bloch, C. Hudelot Image Understanding IJCAI 2016 5/54



ARG: illustration
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Conceptual graphs

Vocabulary
V= (TC7 Tg, I)

» Tc and Tg: the ontologies representing the set of relations and concepts in the domain,
respectively.

» [: a set of names, called individual markers (used for denoting specific objects or entities).

v

CG
A bipartite graph G = (N¢, Ng, E, ) built over V.

» Nc and Ny are the concept node and relation node sets, respectively. The set of nodes of G
is equal to Nc U Ng,

» Eis the family of edges,

> Relation and concept nodes are labeled by types from T¢ and Tr using the function I.
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Preliminaries

Conceptual graphs
=3

|
@) W .@ @1\\@

T 2 =

FOL correspondance

Conceptual graphs correspond to a fragment of FOL without functions.

®(G) = Ix3y(Girl(Mary) A Boy(x) A Car(y) A smile(Mary)A
sisterOf (Mary, x) A playWith(Mary, y) A playWith(x,y))

Core reasoning service: the subsumption relation between graphs (graph homomorphism).

Exponential complexity in some applications.
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Nested conceptual graphs

» The concept nodes can have a conceptual graph contained in them.
» Useful for hierarchically structured knowledge.

Group

Road @ At an angle
- House Shadow

Green
zone
Parking
area

--»: coreference concepts representing the relations between objects inside a
complex concept node and concept nodes outside it.
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Graph-based reasoning for joint segmentation and recognition

You are here!

© Graph-based reasoning for joint segmentation and recognition
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Graph-based reasoning for joint segmentation and recognition

Image labeling as an exploration process

Sequential segmentation and recognition of structures [Colliot et al.].

Start from structures “easy to segment" and proceed sequentially
towards the “difficult” structures by constraining the search space.

Graph-based optimization procedures [Fouquier et al.].

Exploitation of pre-attentional mechanisms (saliency maps) to guide the
exploration process [Fouquier et al.].
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Graph-based reasoning for joint segmentation and r

Image labeling as an exploration process

G. Fouquier, 2010

Generic Image to segment

Knowledge
: already segmented
. O :to segment
Saliency Map -
A priori knowledge

Visual information
Results

Reference
Structures

! » Saliency
2 3 2 2 . — ™ Histogram
1 | 3 3.7
— Saliency
4 4 -

4 | - —— Histogram
Model | Filtered
Graph ! Graph Localizations

Path
3 m
4

Graph
Update

Bluch, C. Hudclut Image Understanding IJCAI 2016 12 / 54



ph-based reasoning for joint nentation and r

Segmentation assessment

Graph at step i Generation of localizatiy S ion and update E
P

—» Representable Localization of 3 —» Representable not consistent
- - = Not representable (from 1 and 2) - - = Not representable @ Localization of 1
Localization of 4 o Segmented & (from 3)
o Segmented (from 1) g @ Localization of 2
(O Not segmented O Not segmented (from 3)
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Graph-based reasoning for joint segmentation and recognition

Backtracking

VAR /N A ANN

Chr CDr CDI CDr CDI THr = CDr CDI THr cor  CDI TP{\
/ ) /S /N ; V2N VAN l b
THr / THr  THI THr  THI CDr THr  THI CDr  THr PUr THI
X — X
PUI THr PUI

© o ® ® ®

Figure: Structure of control of the segmentation results and configuration of the
process. This structure keeps information about past segmentations of structures with
different configurations to prevent the process of trying an already known
configuration and to easily find remaining not-tested configurations.
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Graph-based reasoning for joint segmentation and recognition

Optimisation of the recognition sequence

1st step:

Localisation computing
Saliency based selection

Segmentation CDr

Pur

i=1
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Graph-based reas

Optimisation of the recognition sequence

2nd step:
Cnl
Pul
. Segmentés
Thi . Candidats
Graphi=2
Pul
. Segmentés
. Candidats
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Graph-based reasoning for joint segmentation and recognition

Optimisation of the recognition sequence

Final results
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CSP-based approaches

You are here!

© CSP-based approaches
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CSP-based approaches

Constraint Satisfaction Problems

> A generic framework for expressing and solving problems. whose aim is
to find one or all solutions to a set of constraints.

> A constraint represents a relation, and a constraint satisfaction problem
states which relations should hold among a given set of decision
variables.

> A solution of a CSP is an assignment of values to all the variables that
satisfy all the constraints.

From Russel and Norvig book
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approaches

Constraint Satisfaction Problems

Constraint network P = (X, D,C)

> X: aset of variables.

» D: the domain of variables (D; € D is the domain of variable x; € X).

» (: aset of constraints. Each constraint C € C is defined through a pair (vars(C), rel(C))
where rel(C) is a subset of the Cartesian product of the domain of the variables in

vars(C C X).

> A= {ay,a, - ,an} is a solution of P if every a; € D; and for each C; € C its corresponding

relation rel(C) holds on the projection of A onto var(C) .

Australia example:

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D; = {red, green, blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or

(WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . .

J. Atif, 1. Bloch, C. Hudelot Image Understanding

3

JCAI 2016

20/ 54



CSP-based approaches

CSP related problems

Determine whether P is consistent.
Search a solution A to P.

Find the number of solutions.

vV vyVvVyy

Find the set of solutions.

Procedures for finding a solution

» Search procedures: explore one by one every combination of the domain of each variable
and reject those combinations which do not satisfy one of the constraint. Solved by
backtracking or branch and bound.

» Inference or filtering: reducing the domain of the variables by applying local consistency
algorithms.

Local consistencies
» Arc consistency: X — Y is consistent iff for every value x of X there is some allowed y
> k-consistency: consistency over k variables.

» Node consistency: 1-consistency.

f, L. Bloch, C. Hudelot Image Understanding IJCAI 2016
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CSP-based approaches

CSP for scene labeling

Basic idea

» Knowledge graph model as a constraint network.

> Image of segmented regions.

> Label the image by satisfying the constraints in the knowledge graph.

Adjacent
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CSP-based approaches

CSP for scene labeling

Basic idea
» Knowledge graph model as a constraint network.
> Image of segmented regions.
> Label the image by satisfying the constraints in the knowledge graph.

Adjacent
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CSP-based approaches

CSP for scene labeling

Basic idea
» Knowledge graph model as a constraint network.
> Image of segmented regions.
> Label the image by satisfying the constraints in the knowledge graph.

Adjacent
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CSP-based approaches

CSP-based approaches, early work

Waltz 72

» Understanding of line drawings with shadows.
» logical reasoning in worlds with simple geometrical objects (the worlds of blocks).

» Arc-consistency like algorithm to remove inconsistent interpretations.

Rosenfeld et al. 76
> Labeling of grey-level scenes.
» Parallel version of Waltz filtering approach.

» Fuzzy and probabilistic models allowing each interpretation to have a weight between [0, 1].

Limitations

» Each label (node of the constraint network) is associated with a region in the segmented
image.

> Bijection between the image and the knowledge graphs.

> Image segmentation is not perfect!

v
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CSP-based approaches

CSP with bi-level constraints

Labeling of oversegmented images

Deruyver et al. 97

»> A node in the constraint network is composed of:

» akernel K;,
» a set of interfaces X;.

» Constraints inside the node and between nodes.

> A new Arc-consistency algorithm (AC4bc) with theoretical guarantees.

interface to

interface o
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CSP with bi-level constraints

Interpretation of MR brain images
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sed approaches

Dealing with unexpected objects

Deruyver et al. 09

» Bi-level constraints are adequate for a matching corresponding to a surjective function.
> Not appropriate for undersegmented images (surjection does not hold), or presence of
unexpected objects (e.g. tumors). Two cases:

1. Presence of extra data which cannot be associated with any node.
2. No datum can be associated with a graph node.

» Move from strict arc-consistency to quasi arc-consistency.

Degree of relaxation
» 0 — A and B and C must be satisfied.

» 1 — (A and B) or (A and C) or (B and C)
must be satisfied.

» 2 — A or B or C must be satisfied.

From Deruyver et al A 09.
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CSP-based approaches

Application to pathological brain understanding

Image from Deruyver et al AI 09.
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ased approaches

Fuzzy constraint satisfaction approach

Main ideas
» Use of a nested CG.
» Deal with multiple instantiations through fuzzy CSP.
» Extend FCP3 to deal with groups of objects (e.g. alignments).

Vanegas et al. 16
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Outline of the FCSP-based image interpretation
approach
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CSP-based approaches

[Mustration

Interpretation of satellite images

Vegetation Water Other

\
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i Large concrete surfaces
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[Mustration

Interpretation of satellite images
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[Mustration

Interpretation of satellite images
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[Mustration

Interpretation of satellite images
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[Mustration

Interpretation of satellite images
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Interpretation of satellite images
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[Mustration

Interpretation of satellite images
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[Mustration

Interpretation of satellite images
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[Mustration

Interpretation of satellite images
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CSP-based approaches

Joint segmentation and recognition as the resolution of
a constraint network

Nempont et al. 13

» Brain structure A = fuzzy subset of the space ;14 (€ F)
= variable of the problem.

> Ly takes values in a domain Dy (Dy4 = subset of F).

» Structural priors = constraints between variables (subset of D4 x Dj for a constraint that
involves two structures A and B).

*
31 LR
» V¥V '! ’ I‘\ ;

Drvi
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CSP-based approaches

Joint segmentation and recognition as the resolution of
a constraint network

Definition of a constraint network (x, D, C) with:

> x = set of variables representing the brain structures to be recognized,
» D = set of associated domains,

> C =set of constraints involving variables in x.
Segmentation and recognition = find a solution of the constraint network
» Exhaustive search algorithms are untractable.

» = Propagation algorithm (progressive reduction of the domains) and
extraction of an acceptable solution.

J. Atif, I. Bloch, C. Hudelot
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CSP-based approaches

Domains representation

» Domains are subsets of F: cardinal = 10'31%2 on a 256 x 256 grid!
» The set of fuzzy sets F with the usual partial order < is a complete lattice:
Upper bound: A = V{v € Da}
Lower bound: A = A{v € Da}
» Representation of a domain by its bounds: (A, A) = {v € FIA <v < A}.
» = Reduction of domains by updating their bounds.

> Complexity = definition of contracting operators that reduce domain
bounds and are computed on domain bounds.

A domain for LVI LVIand LVI
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CSP-based approaches

Constraint example: directional relative position

» Constraint:

; 1 ifup <6,
ct (HlaNZ):{ 0 otﬁérwise(ﬂl)

A,B

i right of LV CNIA 5, (V1)

J. Atif, I. Bloch, C. Hudelot Image Understanding IJCAI 2016 35/ 54




CSP-based approaches

Constraint example: directional relative position

» Constraint: ()
; 1 ifu <94
dir _ M2 = 0yt
Cap (s p2) = { 0 otherwise

> 1 € (A, A), Cip (1, p2) =16 pp < 6,(A)

i right of LV NI A 3, (IV])
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CSP-based approaches

Constraint example: directional relative position

» Constraint:

dir 1 ifpp <6, ()
Cap (s p2) = { 0 otherwise

> 1 € (A, A), Cip (1, p2) =16 pp < 6,(A)

» Domain reduction:

i right of LV  CNIA 3, (V1)
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Propagation
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CSP-based approaches

Propagation

Brain Brain
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CSP-based approaches

Propagation

Brain Brain
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CSP-based approaches

Propagation
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CSP-based approaches
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CSP-based approaches
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CSP-based approaches
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CSP-based approaches

Propagation

Brain Brain
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Propagation: iteration 0

H
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Propagation: iteration 200
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Propagation: iteration 2000

AlCI

5
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Propagation: iteration 3000

AICI
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Propagation: iteration 4000

AICI AlCr ALVI
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CSP-based approaches

Propagation: iteration 5000

AlCI AlCr ALVI

THI THr
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CSP-based approaches

Propagation: iteration 6000

AlCI AlCr ALVI

CCg CCs CDI

K/
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CSP-based approaches

Propagation: iteration 7000

AlCI AlCr ALVI

-
CCg CCs

4
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CSP-based approaches

Propagation: iteration 8000

AlCI AlCr ALVI

-
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CSP-based approaches

Propagation: iteration 9000

AlCI
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CSP-based approaches

Propagation: iteration 10000

AlCI AlCr ALVI
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CSP-based approaches

Propagation: iteration 13000

AlCI AlCr ALVI

- -
CCg CCs CDI
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CSP-based approaches

Propagation: iteration 15000

AICI AlCr ALVI ALVr

-
CCs CDI

CDr
ChF
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CSP-based approaches

Propagation: iteration 18000

AlCI AlCr ALVI ALVr

A
N N
cCs col

CDr
ChF
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CSP-based approaches

Extraction of a solution

Nempont et al. 13
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CSP-based approaches

Results

J. Atif, I. Bloch, C. Hudelot

Structure | kappa | Dum
CDI 0.94 0.3
CDr 0.94 0.3
FLVI 0.91 0.4
FLVr 0.89 0.8
THI 0.91 1.0
THr 0.92 0.8
pul 0.86 1.0
PUr 0.73 3.0

Image Understanding

JCAI 2016
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Stochastic grammars and image parsing

You are here!

@ Stochastic grammars and image parsing

loch, C. Hudelot Image Understanding IJCAI 2016 40 / 54



Grammar for IU: a foretaste

a football match scene

),

sports field spectator

curve groups

face texture

color region

From Zhu and Mumford

L. Bloch, C. Hudelot Image Understanding IJCAI 2016 41 /54



Stochastic grammars and image parsing

Grammar in a nutshell

Chomsky 56

Syntax
A grammar G =

> A finite set N of nonterminal symbols,

> A finite set T of terminal symbols that is disjoint from N,
> A finite set R of production rules,
>

A distinguished symbol S € N that is the start symbol, also called the sentence symbol.

Semantics

A sentence w is valid if it can be derived from in a finite number of steps from the start symbol S:

{we (TUN)*|S%w}

where -* is the Kleene star operator: V* = U,enV", V¥ =V x --- x V.
[ ——)

n

The set of all valid sentences define the language of G, denoted L(G).
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grammars and image p

Grammar in a nutshell

Reasoning

>
>
>

Generative mode: generate a set of sentences from a given grammar.
Analysis mode: check if a sentence has been generated from a given grammar.

Inference mode: find a grammar that would have created a set of sentences.

Types of grammars

| 2

| 4
>
>

Type 0: Free or Unrestricted.
Type 1: Context-Sensitive aAS — aBB withA € Nand o, 8,B € (NUT)*
Type 2: Context-Free N — (NU T)*.

Type 3: Finite State or Regular. CFG with RHS restricted to an empty string, or single
terminated symbol, or a terminal symbol followed by a non-terminal one.

. Bloch, C. Hudelot Image Understanding IJCAI 2016
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grammars and image p

Grammar and AND-OR tree

LA Or-node
A:=aB | a| aBc T

A production rule

can be represented by @ @ And-nodes
an And-Or tree %

o0 (31/: - J Or-nodes
|_?L| |Ja_;_| L terminal nodes

From Zhu and Mumford.
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Stochastic grammars and image parsing

Grammars for image understanding
1960-80
» Inspiration from Natural Language Understanding.

> Intensive work of K.S. Fu, and others (e.g. Riseman, Ohta
and Kanade).

» Problems: Knowledge bottleneck, Computation
complexity, Semantic gap.

90’s: Hibernation but with some resistants

» Zhu and Yuille 96,

» Mangin et al. 94: Brain cortical sulcal anatomy labelling.

mid 00’s—: resurgence

» Geman, Ahuja, Yuille, Zhu and Mumford.
» Mumford and Desolneux’s book: General Pattern Theory.

> Reasons: advances in mathematical models (e.g. Markov
graphical models, sparse coding, stochastic context free
grammars), inference algorithms, real datasets.

PatternTheory

. Bloch, C. Hudelot Image Understanding
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Stochastic grammars and image parsing

Example: house description

. I:IKI D EH./_\. \A —so00T(Q)

VN = {(door), (windows), (chimneyy), (wall),
(gable), (roof ), (frontview)

, (sideview), (house)}

S = {(house)}

[Stanchev and Green]

Rules
=door= — D
<windows> — EE

=windows> — ( <windows=, EH
<chimney> —

<chimney> — u
<wall> — |:|
=wall> — @ ( <door=, |:|)

—KT(T(DD),OEB> D))T(Q,B( D I:l )

u

u =H

J. Atif, L. Bloch, C. Hudelot Image Understanding

=wall> — O =<wmndow>, l:‘ )

<gable> - =T
<gable> — T (<chimney=<"—>)

<roof> — D

<toof> — T ( <chimney:»,D)
<front view> — T ( <gable>, <wall=)
=side view= — T ( <roof>, <wall>)
<house> — <front view>

<house> — (<house>, <side view=)

IJCAI 2016 46 / 54



Stochastic grammars and image parsing

Modern grammatical approaches

Stochastic Context-Free Grammars

G = (N,T,R,{P;})
» Production rules are assigned with probabilities: Pi(R;), >z Pi(Ri).
> Sentences from the language are assigned with probabilities:

L(G) = {(w,P(w)) | S % w,w € (TUN)*}

Start from root node S.

Apply rules sampled from a distribution.

Outputs a parse tree, leaf node are terminals.

Parse tree § is a set of nodes V, each node has label /().
Prob. of the tree: Py.(3 | roots) = [[,cy Piw)(R(v)).

ARSI
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Stochastic grammars and image parsing

SCFG for vision applications

v

SCFG ignores spatial constraints between objects, and objects attributes.

v

Define nodes attributes representing objects properties = attributed
SCFG.

Move from parse trees to parse graphs to deal with spatial constraints.

v

v

Lost of independence property.
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Stochastic grammars and image parsing

Attributed SCFG and AND-OR Graph

» State variables y,, defined at nodes p1 € V.

Edges & specify connections between
nodes and define their cliques.

» Potential functions defined over the

cliques. G=(V,¢)
'A Or-node
P I o) = —a.P(I
50 = 5o semp(-a-e(l,a) p .
And-nodes
EylD= 3 oo™ za,) Y
neVAND (1)
Y aPeRnz,) (@ O 0 E T o
p€EVOR(t) l
. [l terminal nodes
+ Z O[}L@ (17 Z“) From Zhu and Mumford
;A,EVLEAF(t)

» Energy can be decomposed recursively
from level to level.

» Enables dynamic programming.
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rammars and

AND-OR Graph and Parse Graph

(a) And-Or graph

(b) parse graph 1

(c) parse graph 2

Q and-node
32 or-node

O ieaf node

(d) configuration 1

Image Understanding

From Zhu and Mumford
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Stochastic grammars and image parsing

Some applications

Image parsing bottom-up top-down process (Zhu and Mumford)

scene
objects o
parse graph
G rectangular
surfaces
top-down
propasals
configuration
C bottom-up
propasals
edge map
—
image
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Stochastic grammars and image parsing

Demo: Natural language Query based on Joint Parsing

UCLA Center for Vision, Cognition, Learning and Art
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You are here!

© Conclusion and open problems
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Conclusion and open problems

Concluding remarks and open problems

Image understanding is an Al task.
Importance of spatial information and calculi.

Focus on a subset of approaches, but there are many many others.

vV vVv.v VY

Other interpretation tasks, problems, and applications.

Open problems
» Learning knowledge graphs (e.g. terminologies).
» Do all interpretation problems are learning-oriented?

» More on logical reasoning: abduction, revision, spatio-temporal
reasoning.

» Combining different types of uncertainty.
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